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Applications of autonomous vehicles are found in various diversified fields including 

defense, agriculture, mining, and space exploration. For successful operation of an autonomous 

vehicle, the vehicle has to dynamically interact with the environment around it. My dissertation 

presents the development and implementation of a sensor component to represent the 

surrounding environment around an autonomous vehicle. The environment is modeled as a grid 

and each cell in the grid is assigned a traversability value. This grid, termed as the Traversability 

Grid, forms an internal representation of the state of the environment in real time. The 

Traversability Grid aids the autonomous platform to drive on a good traversable path and avoid 

non-traversable regions around it. 

The real world environment is highly unstructured and dynamic. It is very difficult to 

discretize the world into two variables: good and bad, hence the sensor component developed in 

this dissertation uses a scale of traversability values to classify the region around the vehicle. 

LADAR (Laser Detection and Ranging) sensors are used to sense the environment. The raw data 

from the LADAR sensors are processed using two different algorithms; obstacle detection and 

terrain evaluation. The obstacle detection algorithm uses a weighted sum of evidences method to 
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find if a region is occupied or free. The terrain evaluation algorithm maps the terrain in front of 

the vehicle. Based on the geometry of the terrain, it assigns a traversability value to the region. 

Features used to find the traversability include discontinuity in the terrain, slope of the terrain 

based on the least squares method, and the variance in the point cloud.  

Each of the two algorithms, obstacle detection and terrain evaluation, have certain 

advantages and limitations. Also like any other sensor algorithm, these two algorithms have 

some uncertainties associated with their outputs. In my work these algorithms are fused together 

to complement the uncertainties and limitations of each of them, and outputs of the two 

algorithms are fused using the certainty factors approach.
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CHAPTER 1 
INTRODUCTION 

Motivation 

The concept of unmanned autonomous vehicles is one of today’s leading research areas. 

An autonomous vehicle can be defined as a vehicle which would drive by itself with a limited 

degree of human intervention or possibly no human intervention at all. So far these vehicles have 

found applications in various fields such as military, planetary exploration, agriculture, and 

mining. The Defense Advanced Research Projects Agency (DARPA) has taken a lead role in 

encouraging and pursuing the autonomous vehicle technology. The large participation and 

excitement associated with the DARPA Grand Challenge National event in 2004 and 2005 is an 

indication of the importance of autonomous vehicles in today’s world. 

As shown in Figure 1-1, the operation of an autonomous vehicle can be classified into four 

main components, of these the perception of the environment and vehicle control components 

interact with the real world environment, and the world model and intelligence components store 

the information and make appropriate decisions. Perception of the environment in real-time is 

critical for the successful operation of an autonomous vehicle and the research in this paper is 

focused on the perception element. My research is intended towards representing the real world 

environment in a format that would help the robot find and traverse the best possible terrain and 

avoid obstacles as it moves towards its goal. The problem of perception can be categorized into 

two main sections, one is sensing the environment with the use of various sensors and the other 

is to represent this data in a form the vehicle can use to maneuver. 

To scale the difficulty of the problem imagine driving on rough terrain. How many times 

would one have to ask the question, “which would be the best way to go?” Would it be desirable 

to pass the small ditch in order to avoid a big boulder or would it be better to traverse the uneven 
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terrain rather than going through the ditch? It is somewhat difficult for humans to answer these 

questions; how difficult it would be to represent this heterogeneous environment in a digital 

format for a robot to understand. The problem is not limited to this. The human perception 

system is very powerful and humans are able to relate to things around them very well; the world 

is defined in terms of human perception. It is not so easy in the case of sensors. Most of the 

sensors available today are limited to measure only a limited category of features. For example, 

one could capture color information with a camera but not depth, so is the same with other 

commercially available sensors such as laser, infrared, and sonar. Although there are techniques 

like stereo vision where one can capture both color and depth, they are limited by factors such as 

environmental lighting conditions and noise. The certainty of any commercially available sensor 

varies with the environmental conditions. The work in this research is an effort to find an 

effective solution to the above problems.  

Background 

Within the Center for Intelligence Machines and Robotics (CIMAR) lab, research in the 

area of obstacle detection using real-time sensors for autonomous vehicles started with 

simulations presented by Takao Okui [Okui 99]. Okui presented various techniques for updating 

local grid maps using simulated sensors. Some of the methods he used included probability 

theory, Bayes theorem, histogram method, fuzzy logic, and non-homogeneous Markov chains. 

This work helped the research community in comparing the advantages and disadvantages of 

each of the above methods. David Novick [Novick 2002] took the research further by 

incorporating the obstacle detection component on an actual vehicle. He pursued the non-

homogeneous Markov chains approach for updating grid maps. He did an excellent job in fusing 

the output of two non-homogenous sensors, the laser range finder and the sonar sensor. 
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My work here aims to extend these previous efforts. My objective is to identify traversable 

regions in an off-road environment that a car-like autonomous vehicle can travel at speeds 

approaching 30 mph. The next chapter contains a review of the sensors and algorithms already 

presented by the research community to solve this problem. 
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Figure 1-1. Important components of an autonomous vehicle. 
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CHAPTER 2 
LITERATURE REVIEW 

Various sensors have been used to date for detecting obstacles and estimating terrain. This 

chapter begins with a brief discussion on the operating principles of some of these sensors. This 

is followed by a brief theory on the representation of the environment and managing the 

uncertainties associated with sensing.  The chapter concludes with a review on the literature that 

has been presented and implemented in the area of real time perception of the environment for 

autonomous vehicles. 

Sensors 

Sensors in general can be categorized as active or passive. Active sensors have an internal 

energy source and emit energy into the environment while passive sensors do not emit energy 

and depend on their surrounding environment as the source of energy. Both types of sensors are 

widely used in autonomous vehicle applications. Sensing of the environment includes detecting 

obstacles and characterizing terrain. 

Monocular Vision 

Object detection and classification using color has been discussed in the research 

community for a long time.  The primary features used for object detection in this case are the 

RGB color space. Some of the commonly used algorithms to detect obstacles or classify 

traversable terrain are edge detection and optical flow. Implementations of monocular vision are 

found in Davis [1995], Takeda [1996] and Royer [2005]. 

Stereo Vision 

The slightly different perspectives from which our eyes perceive the world lead to different 

retinal images, with relative displacements of objects (disparities) in the two monocular views of 

a scene. The size and direction of the disparities of an object serve as a measure of its relative 
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depth; absolute depth-information can be obtained if the geometry of the imaging system is 

known. Stereo vision can be used to construct a three-dimensional image of the surroundings 

using the same principle as human eye, provided the geometry and optics of the sensor are well 

known. An implementation of the stereo vision system can be found in Wu [2002]. 

Thermal Imaging 

Thermal cameras can detect energy at infrared frequencies. All objects emit infrared 

energy, the hotter the object the more infrared energy it emits. Thermal cameras work better in 

the night as there exists a better contrast of the surrounding objects.  During the day objects 

absorb heat from the sunlight and tend to blend together. Algorithms such as edge detection are 

used for classification of obstacles using thermal imaging. Matthies [2003] implements a thermal 

camera for detecting negative obstacles.  

Laser 

Most laser sensors use a visible or infrared laser beam to project a spot of light onto a 

target, whose distance is to be measured. The distance from the spot on the target back to the 

light-detecting portion of the sensor is then measured in several ways [Carmer 1996]. The 

general factors to consider when specifying a laser distance sensor include maximum range, 

sensitivity, target reflectance and specularity, accuracy, resolution, and sample rate. The general 

methods used to measure distance are optical triangulation and time of flight distance 

measurement.  

The optical triangulation measurement is used to measure distance with accuracy from a 

few microns to a few millimeters over a range of few millimeters to meters at a rate of 100 to 

60,000 times per second.  A single point optical triangulation system uses a laser light source, a 

lens and a linear light sensitive sensor. A light source illuminates a point on an object, an image 

of this light spot is then formed on the sensor surface, as the object is moved the image moves 
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along the sensor; by measuring the location of the light spot image the distance of the object 

from the instrument can be determined.  

Laser time-of-flight instruments offer very long range distance measurement with a trade 

off between accuracy and speed.  Figure 2-1 shows the two different methods to compute range 

distance using laser sensors. As shown in Figure 2-1, a short pulse of light is emitted and the 

delay until its reflection returns is timed very accurately. Since the speed of light is known, the 

distance to the reflecting object can be calculated and this is referred to as the time of flight 

measurement. The laser sensor used in this research works on the principle of time of flight. The 

second method to compute the range distance is by measuring the phase difference between 

emitted and reflected waves. Example of a laser sensor working on this principle can be found in 

Hancock [1998]. 

Ultrasonic Transducers 

An ultrasonic transducer works on the principle of time of flight measurement as well. A 

short acoustic pulse is emitted from the sensor; if the pulse hits an object the return echo is 

sensed.  There are some inherent properties of this sensor which reduce its accuracy of 

measurement such as, the large wavelength of ultrasonic energy as compared to the surface 

roughness of an object and its wider beam angle. An implementation of the Ultrasonic sensors 

can be found in Novick [2002]. 

Radar 

Radar emits electromagnetic radiation. As the signal propagates, objects reflect, refract and 

absorb the radiation. Large reflecting objects will reflect a stronger signal. The signal strength 

would be different for different materials. A lower signal strength is received for a large obstacle 

with high absorptivity. Radars are generally used to detect large metallic obstacles at a distance. 

Radar based sensor modeling can be found in Foessel-Bunting [1999]. 
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Environment Representation 

In order to use the sensors in autonomous robotic applications, the measurements from the 

sensor are converted into state variables which form an internal representation of the 

environment. The state variables define the state of the environment at the current instance of 

time. The two methods generally used to model the environment in autonomous vehicle 

applications are vector maps and raster maps. 

The 2-dimensional vector maps are based on geometric primitives: point, lines, circles, 

polygons etc. A set of environmental characteristics are tagged with these primitives. These 

characteristics could be positive or negative obstacles, moving obstacles, obstacle segmentation 

based on color, etc.  Raster maps are built by tessellating the environment around the robot in a 

2-D grid. Each cell in the 2-D grid can be classified based on the sensed environment 

characteristics. The main advantage of a vector map is its compactness. For example only four 

vertices are needed to define a rectangle of size m by n, while to represent the same rectangle in 

a 2-D grid map an entire rectangular matrix of cells is required whose size will depend on the 

size of the rectangle. Generating vector primitives require highly accurate sensor data as 

compared to generating 2-D raster maps. One of the examples of a raster map implementation 

found in the literature is the Occupancy Grid map [Thrun et al. 2005]. Occupancy Grids 

tessellate the surrounding continuous space around the robot into fine grained cells. 2-D 

Occupancy Grids are more common. In 2-D grids, the information from the 3-D world is 

represented as a 2-D slice. Each cell in the grid corresponds to a variable, which represents the 

probability of occupancy of that location. 

Uncertainty Management 

The sensors discussed above measure a particular characteristic of the environment; hence 

these sensors provide only partial information of the surroundings. Sensor measurements are 
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often corrupted by noise. Hence there is always some amount of uncertainty associated with the 

sensor in its representation of the environment. The state estimation algorithms seek to recover 

the state variables (i.e., the state of the environment from sensor measurements). As it can be 

inferred, most of these algorithms have to use an uncertainty management mechanism to come 

up with an estimate of the environment from the sensor readings. Some of these algorithms; 

probability theory, histogram method, Bayes theorem, fuzzy logic is discussed in Novick [2003]. 

Thrun et al. [2005] discusses the implementation of Bayes filter, which is a variant of the 

Bayes theorem used to update Occupancy Grids. The Bayes filter uses the log odds ratio 

representation instead of the probability representation of occupancy.  The log odds 

representation, lx  is given as: 

( ) ( )
( )

log
1

p x
l x

p x
⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠
 (2.1) 

where 

p(x) is the  probability of occupancy. 

The log odds ratio is recursively computed as the posterior value from the prior log odds ratio 

and the current sensor observation as follows: 
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( )1 0

|
log

1 |
t

t t
t

p x z
l l l

p x z−

⎛ ⎞
= + −⎜ ⎟⎜ ⎟−⎝ ⎠

 (2.2) 

where: 

lt is the posterior log odds ratio, 

lt-1 is the prior log odds ratio, 

( )| tp x z  is the inverse measurement model which specifies the distribution over the state 

variable x as a function of the measurement zt and 
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l0 is a constant denoting the prior before any sensor readings. 

As seen from the Equation 2.2, the Bayes filter is additive and hence any algorithm that 

increments and decrements a variable in response to measurements can be interpreted as a Bayes 

filter in log odds form. 

Uncertainty Management in Multi-Sensor Fusion 

Any one type of sensor measures a limited characteristic of the environment. Moreover 

similar sensor hardware used in different sensor algorithms, can obtain different information 

from the environment. The Bayes filter discussed above is not very useful in combining the 

outputs from different sensor algorithms. Consider for example, an obstacle which can be 

detected by one sensor type but cannot be detected by another sensor. These two sensor types 

would generate conflicting information, and the resulting occupancy grid map would depend on 

evidences brought by both sensor systems, hence the results will be ill-defined. The information 

from these multiple sensors is combined by generating a sensor map for each sensor type and 

then integrate the maps by using a suitable sensor fusion technique. Some of the techniques 

which can be used to fuse more then one sensor maps into a single map, where each sensor map 

might provide different information of the environment are discussed below. 

Certainty Factors 

Certainty factors [Gonzalez 1993] formalism assigns a belief value called as the CF value 

for a hypothesis, based on the evidence presented to support the hypothesis or evidence 

presented to contradict the hypothesis. The CF values are expressed as a set of rules having the 

format: 

IF evidence 

THEN hypothesis (with a CF value) 
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A number of such rules are used, each to define the belief in the hypothesis based on the 

evidence presented. If the evidence supports the hypothesis, the CF value is between 0 and 1. If 

the evidence contradicts the hypothesis, than the CF value is between 0 and -1. The overall belief 

in the hypothesis is computed by combining the individual CF values from each rule. The 

following mathematical relationships are used to combine the CF values: 

Let, CF1, CF2 be the two CF values to be combined. If both the CF values support the 

hypothesis, the combined CF value is, 

( )1 2 11combinedCF CF CF CF= + × −  (2.3) 

If the two CF values contradict each other, then the combined CF value is, 

( )
1 2

1 21 min ,combined
CF CFCF

CF CF
+

=
−

 (2.4) 

The resulting CFcombined is then used as the CF1 value and combined with another CF value. For 

the sensor fusion process, consider a number of sensors, which evaluates the environment and 

presents evidence to either support the presence of an obstacle or supports the presence of a good 

traversable path (contradiction to the presence of obstacle). The results from these individual 

sensors can be combined using the certainty factors approach.  

Dempster-Shafer Theory 

The Dempster Shafer theory [Shafer 1976] was developed through the efforts of Arthur 

Dempster and his student, Glenn Shafer. It is based on a mathematical theory of evidence where 

a value between 0 and 1 is assigned to some fact as its degree of support. The theory allows 

belief values to be associated with sets of facts as well as individual facts.  
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For example consider a case, where there are two possible conclusions. The set of possible 

conclusions is, 1 2{ , }θ θΘ = . The frame of discernment is defined as the set of all possible 

conclusions. This set is, { 1 2 1 2,{ },{ },{ , }φ θ θ θ θ }, where, φ , represents an empty set.  

A mass probability function assigns a numeric value from the range [0, 1] to every set in 

the frame of discernment. The mass probabilities are assigned based on the support that the 

evidence presents for each of the conclusions. The sum of these mass probabilities (i.e., the total 

probability mass) is 1. 

The belief, Bel of a subset A is the sum of all the mass probabilities, m, assigned to all of 

the proper subsets B of A: 

{ }( ) { }( ) { }( ) { }( )1 2 1 2 1 2, ,Bel m m mθ θ θ θ θ θ= + +  (2.5) 

The certainty associated with a particular subset A, is defined by the belief interval, 

( ) ( )*Bel A P A⎡ ⎤⎣ ⎦ , where, ( )Bel A  is the measure of total belief in A and its subsets and 

( ) ( )* 1 cP A Bel A= −  is a measure of failure to doubt A. 

Finally for combining two evidences, the mass probabilities from each of the evidence are 

combined using Dempster,s combination rule. Consider mass probabilities, m1 (representing a 

preexisting certainty state associated with hypothesis subsets X) and m2 (representing some new 

evidence associated with hypothesis subsets Y), these two are combined into a mass probability 

m3 (representing the certainty state associated with C, the intersection of X and Y) as follows: 

( ) ( ) ( )
( ) ( )

1 2
3

1 2

X Y C

X Y

m X m Y
m c

m X m Yφ

∩ =

∩ =

∑ ×
=

∑ ×
 (2.6) 

Neural Networks 

Artificial neural network (ANN) is an information processing model that is inspired by the 

way biologic nervous systems such as the brain, process information. The ANN model is made 
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of strongly connected groups of simple processing elements called neurons. These neurons are 

activated when their input is higher than some threshold value. When the neurons fire, they 

communicate their value to their downstream connected neurons, which perform the same 

function. The main advantage of ANN’s is their ability to learn from training data. The learning 

process may be supervised (backpropagation method) or unsupervised learning (Kohonen 

network). The major limitation of neural networks is the problem of developing a general 

representation from a limited amount of training data. 

Sensor Implementations in Autonomous Vehicles 

The previous section introduced the various types of sensors used in autonomous vehicles 

for real time perception. A brief theory of some of the environment state representation 

techniques and managing uncertainty associated with sensor results was discussed. In this section 

some of the methods and algorithms used to implement the sensors are presented. 

In most of the methods, terrain mapping is described as building a Cartesian elevation map 

from range sensor data. However using this method for mobile robots has certain drawbacks, 

such as the elevation data can be sparse and non-uniform (this is more apparent as the distance 

from the sensor increases and because of the occlusion of regions due to obstacles.) To deal with 

the above problems [Kweon 1991],  implements a locus method for building 3D occupancy maps 

using successive range images obtained from a laser range finder. In this method the elevation z, 

at a point (x,y) is found by computing the intersection of the terrain with a hypothesized vertical 

line at (x,y). The basic idea of the algorithm is to compute this intersection in the image plane. 

[Matthies 2003] describes how a thermal camera is used to detect negative obstacles. The 

change in the temperature profile of the terrain due to uneven heating and cooling is accounted 

for. Specifically during night time the interior parts of the negative obstacles tend to remain 

warmer as compared to the surrounding terrain. 
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RGB space has been effectively used [Davis 1995] to classify terrain as vegetation or non-

vegetation. Two classification algorithms, the Fisher linear discriminant (FLD) and the 

backpropagation neural network, are discussed. Consider an N-Dimensional space, where the 

input data could belong to one of the two classes A or B. The FLD algorithm is a linear classifier 

and generates a linear decision surface that maximizes the correct classifications of A and B. 

In many cases the robots are required to work in a dynamic environment. A method for 

detection of moving obstacles [Kyriakopoulos 2003] and estimating the velocity of the obstacle 

is discussed and implemented. The paper assumes a polyhedral world i.e., the environment 

around the robot is composed of linear segments. A single 2-D laser range sensor scans the 

environment. The range measurements from the sensor are expressed in a world coordinate 

frame after accounting for the vehicle position and orientation as follows:  

( )R rx x r e θ ϕ= + ∗ +  (2.7) 

where 

x  represents the Cartesian coordinates of the point in the world coordinate system, 

( ),R rx θ  is the position and orientation of the vehicle, 

ϕ  is the angle of the laser ray in the sensor coordinate system and 

 ( )re θ ϕ+  represents the unit vector in the direction of the laser ray 

Each line segment of an obstacle can be defined by a parametric model as, 

0
i i ix x u e= +  (2.8) 

where 

0
ix  is a point on the segment and  

ie  is the associated unit vector parallel to the segment i. 



 

28 

From the Equations 2.7 and 2.8, the intersections of the line segments with the laser beam 

can be computed. Additional constraints are considered such as the case where the laser ray 

intersects more than one obstacle line segment for which the range value will correspond to the 

nearest obstacle. The candidate moving obstacles are then selected on the basis of the obstacle 

line segments obtained from the successive range reading sets. 

Map building algorithms have been developed [Huber 1999] using range sensors. The 

authors discuss the face-based spin image algorithm to build a map from two laser range 

scanners, each mounted on a different vehicle. 

Kelly and Stentz [1998] developed an adaptive perception algorithm for off-road 

autonomous navigation. The input to the algorithm is through range images from laser 

rangefinders and stereo vision. The data from the sensors is processed only in a region of interest 

that contains the most useful information. The 3D data of the terrain is stored in a 2-D ring-

buffer that accommodates vehicle motion through modulo arithmetic indexing. The terrain map 

discussed eliminates the need of copying the terrain data as the vehicle moves. 

Wolf [2005] presents an online algorithm that builds a 3-D map of the terrain using 2-D 

laser range finder data. The terrain is classified as navigable or non-navigable using Hidden 

Markov models. 

A radar sensor model [Foessel-Bunting 1999] is developed to build three-dimensional 

evidence grid maps. The grid is updated using the logarithmic representation of Bayes rule. 

A perception module which processes range images to identify non-traversable regions of 

the terrain is developed [Langer D et al. 1994] for autonomous off-road navigation. The sensor 

used is the ERIM laser which acquires 64 by 256 range images at 2 Hz. The data from the laser 

range images are converted into Cartesian coordinates local to the vehicle. These data points are 
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then stored in a 2 dimensional grid map. Each cell of the grid map is evaluated for its 

traversability. The features used to evaluate traversability are the height variation of the terrain 

within the cell, the slope of the patch of terrain contained in the cell and the presence of 

discontinuity of elevation in the cell. The algorithm only computes untraversable cells and 

renders no opinion on smooth traversable terrain. 

Bhatavia [2002] proposed a method to detect obstacles on an outdoor terrain which is 

highly curved with natural rise and fall, but is assumed to be locally smooth. A cost-effective 

laser scanner system was developed to replace the commercially available high cost two axis 

lasers. A single axis laser scanner is mounted at an angle of 90° so as to scan a vertical line. The 

laser is provided with a rotary motion about the second axis to sweep from left to right and 

register a set of vertical line scans.  

The data registered from each vertical scan are classified as an obstacle or free space using 

a gradient based algorithm. Each of this single scan classification is stored in time-history. The 

nearest neighbor fusion algorithm generates the candidate obstacles by clustering the group of 

scans collected in a time window. Experimental results demonstrate that the algorithm is capable 

of detecting obstacles of size 15 cm in a hilly terrain with minimal false positives; however the 

terrain has to be very smooth. 

The work presented by Talukder [2002a] implements a different approach to classify 

obstacles based on 3-D geometry for an off-road environment. A conical region is defined 

around each point in 3-D space. If there is any point in the truncated portion of the cone, both the 

base point of the cone and the point under consideration are defined as an obstacle. This 

essentially means for a point to be an obstacle the height difference between the base point which 

represents the cone and the point under consideration should be greater than a threshold value 
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and the angle between the line formed by the two points and the horizontal surface should also 

be greater than a threshold value. The 3D points are projected on an image plane and an 

algorithm to implement the above strategy in the image plane is presented. In the above method, 

obstacles are represented as pairs of points and this feature is further extended to segment 

obstacles. All the pairs of points which represent obstacles are defined as linked nodes of an 

undirected graph. Thus points connected in the chain will represent the same obstacle. 

Extension of the above work is presented in Talukder [2002b]. Along with the geometrical 

properties, color and texture are used to classify obstacles. The author discusses the concept of 

obstacle negotiation by presenting techniques to predict the dynamic vehicle response to various 

natural obstacles. The obstacles in a natural terrain such as green vegetation, dry vegetation, hard 

rock and soil are composed of widely different material properties and yet can be of the same 

size. Using the color and texture features, the obstacles can be classified based on their material 

properties. The compressibility of the obstacles is modeled using a spring-damper system. The 

vehicle is also modeled using a mass-spring system for each of its wheels. The vertical 

acceleration of the vehicle is computed as it traverses the evaluated path using the obstacle and 

vehicle models. This predicted acceleration profile is used for obstacle negotiation. 

A novel filtering method for terrain mapping, called the Certainty Assisted Spatial (CAS) 

filter is proposed [Ye 2003]. In this method an elevation map and a certainty map are built from 

a forward looking 2-D laser range finder. The above filter is compared with the conventional 

available filters for effective filtering of erroneous measurements due to mixed pixels, missing 

data, artifacts and noise. 

An approach for traversability analysis of rough terrain [Ye 2004] utilizing an elevation 

map is proposed. The elevation map is defined as E = {Zi,j}where i and j are the row and column 
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of the cell. A cluster of neighboring cells with non-zero elevation values is defined as an 

elevation-obstacle. A traversability map is created along with the elevation map to define the 

traversability index. The traversability index for each cell is evaluated by computing the slope 

and roughness of a square terrain patch with the cell under consideration as the center of the 

patch. The size of the patch is equivalent to the number of cells required to accommodate the 

vehicle in any orientation. Depending on the value of the traversability index, the originally 

classified elevation-obstacles are re-classified. 

In contrast to the general approach of converting the disparity image from stereovision into 

3-D Cartesian coordinates to detect obstacles/traversable terrain, [Wu 2002] proposes to use the 

raw disparity data for 3-D obstacle detection using stereovision. Two different maps are 

generated: the obstacle map and the slope map. The obstacle map is 75 by 75 elements with each 

element representing a 0.2 m by 0.2 m area and the slope map is 15 by 15 elements with each 

element of size 1 m by 1 m. The obstacle map element is marked as one of four possible values; 

undefined, traversable, negative obstacle or positive obstacle. The obstacle detection algorithm is 

based on the horizontal isodisparity profiles generated by the stereo image at fixed intervals and 

the reference lines for each of the isodisparity profiles. 

To represent and classify the environment around the robot, a height map is built from 

range data and fused with the video image [Asada 1988]. The height map obtained from the 

range image is segmented into four regions: unexplored, occluded, traversable and obstacle. The 

region where the height information is not available and falls outside the sensor view is tagged as 

unexplored and the remainder of that region is marked as occluded. The points close to the 

assumed ground plane and the neighboring points with low slope and curvature are classified as 

traversable. The remaining regions are labeled as obstacles. The obstacle region is further 



 

32 

classified as natural or artificial using the height map and intensity image. The paper assumes 

that artificial obstacles such as cars have planar surfaces which yield constant slope and low 

curvature in the height map and linear features in the intensity image while natural obstacles 

such as trees have fine structures and yield high curvatures in the height map and large variance 

in the intensity image. A physical simulator of the scale 87:1 was built to perform the 

experiments. 

Most of the commercially available laser range sensors provide two kinds of information 

for each laser beam reading: the distance of the object being scanned and the intensity of the 

returned signal. [Hancock 1998] tries to exploit the second piece of information to detect 

obstacles in a highway environment. Obstacle detection based on range readings as discussed in 

most of the literature involve building 3-D Cartesian maps and hence involves large 

computation, not making it suitable for high speed environments. Intensity based obstacle 

detection for a forward looking laser works on the simple principle that vertical surfaces in front 

of the vehicle return a stronger signal as compared to the signal returned by horizontal surfaces. 

This is especially true for larger look ahead distances of the order of 60m where the tilt angle of 

the laser is very small (about 1° in the present paper). However the major drawback with the 

above method is that the intensity varies significantly with the surface properties of the object. 

Most autonomous vehicle development projects use off the shelf laser range sensors which 

are not specifically developed for the application. With the advancement in autonomous vehicle 

technology, commercially available sensors do not meet the specific requirements of range and 

angular resolution for evaluating wide range of obstacles and terrain at high speed. Carnegie 

Mellon University has developed a high speed, high accuracy LADAR [Hancock 1998] in joint 

collaboration with K2T, Inc., and Zoller + Froehlich. The device consists of a two-axis 
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mechanical scanning system with a single point laser measurement system. The scanner provides 

an unobstructed 360° horizontal field of view and a 70° vertical field of view. The resolution of 

the system is variable with a maximum of 0.6° per pixel. 

Multiple sensors have been used [Stentz 2003] to detect and avoid obstacles in natural 

terrain. The perception system is categorized in two sensing modules. The appearance sensing 

module includes color cameras and Forward Looking Infrared (FLIR) cameras, while the 

geometric sensing module includes LADAR sensors and stereo vision. The geometric sensing 

module detects geometric hazards from the range data and assigns traversability costs. The 

traversability costs are further modulated by the compressibility of the sensed terrain. The 

compressibility is assessed using the range texture, color and color texture to discriminate rigid 

rocks from bushes. 

Sensor data from color and IR cameras are combined with range data from a laser sensor in 

[Dima 2003] and [Dima 2004] for obstacle detection in an off-road environment. The image 

space is tessellated into a grid of rectangular cells. The range data are projected into the 

tessellated grid. Features such as the mean and standard deviation of pixel color in each cell, 

mean and standard deviation of infrared pixel values in each cell, texture information and the 

range reading statistics are used as input to the classifier. Instead of combining all the features 

into one vector and using only a simple low level data fusion, methods to use a pool of classifiers 

on the subsets of these features and then represent the final output as a fusion of these classifiers 

are discussed. The classifier fusion algorithms presented in the paper are Committees of Expert, 

Stacked Generalization and AdaBoost with classifier selection. One of the limitations with the 

classifier fusion algorithms is the need of supervised learning and hence a large set of training 

data. 
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Range imaging sensors are widely used in detecting obstacles with a variety of obstacle 

detection algorithms. [Matthies 1994] proposes a model to evaluate the different obstacle 

detection methods. The proposed method for evaluation is divided into two levels: the quality of 

the raw range data from the sensors and the quality of the obstacle detection algorithm. The 

quality of the range data is evaluated based on statistical performance models where both the 

random errors caused by noise and the systematic errors due to artifacts are considered.  To 

evaluate the quality of the obstacle detection algorithm, the model predicts the quality of 

detecting obstacles and the probability of false positives as a function of the size and distance of 

the obstacle, the resolution of the sensor and the level of noise in the range data. 

[Murphy 1998] discusses the evidential reasoning techniques to fuse sensor outputs. 

Dempster-Shafer (DS) theory is implemented for sensor fusion at symbol level in the Sensor 

Fusion Effects (SFX) architecture. The SFX consists of three distinct activities: configuration, 

uncertainty management and exception handling. The uncertainty management activity collects 

observations from the sensor and computes the total belief in the percept in three steps. First the 

observations from each sensor are collected and fused at the pixel level in the collection step. 

The features extracted from these observations are fused at the feature level in the preprocessing 

step resulting in a belief function over each sensor’s unique frame of discernment. Finally the 

fusion step combines these belief functions from different sensors into a total belief in the 

percept. In the case of a sensor anomaly in any of the steps, exception handling is triggered. Two 

components from the DS theory, the weight of conflict metric and the enlargement of the frame 

of discernment, are used for the sensor fusion. The implementation of the above architecture is 

demonstrated on a mobile robot which acts as a security guard. The outputs from a color camera, 

a black and white camera, an infrared camera and an ultrasonic sensor are fused to guard a scene. 
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In an application different from autonomous vehicles, a sensor fusion architecture is 

designed [Wu 2002] for context sensing. The authors have pointed out the difficulty that lies 

with fusing different sensors due to the overlaps and conflicts in the outputs and the variations in 

a sensor’s performance with a change in situation. In the experimental example presented, a 

user’s focus of attention is tracked using multiple evidences from different sensors. The output 

from each of the sensors, a camera and a microphone are viewed as evidences. Two different 

methods, weighted probability linear combination and Dempster-Shafer theory of evidence, are 

used to fuse the evidences obtained from the sensors. Since the confidence level of the sensors 

varies with situation, the authors propose a new concept for a weighted Dempster-Shafer 

evidence combining rule. The idea is that if we know how a sensor performs historically in 

similar situations, we can use this information to decide how much confidence we have on the 

sensors current estimation. The results from the combined estimations are compared against the 

results obtained using only a single sensor and found to be better in most of the cases. 

Rather than extracting sensor data to form an intermediate representation which can be 

utilized in the planning, [Goodridge 1994] proposes a non-representation based sensor fusion 

scheme to control robots. A mapping between the sensor data and control signals is developed 

using Fuzzy sets. The PCFUZ fuzzy development system is developed and used on an indoor 

mobile robot to conduct experiments involving goal seeking, obstacle avoidance, barrier 

following and object docking behaviors. The sensors on board include sonar, vision and tactile 

sensors. Fuzzy rules are created using the outputs from these sensors to produce a continuous 

surface which defines the control signals. Different techniques such as summation, weighted 

averaging, fuzzy multiplexing and hierarchical switching are discussed to implement multiple 

behaviors such as the combination of obstacle avoidance and goal seeking. 
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Urmson [2006], Miller [2006], Trepagnier [2006] and Braid [2006] presents some of the 

sensor implementations in the 2006 DARPA Grand Challenge competition. A brief discussion of 

these sensor implementation is presented below. 

Urmson [2006] implements a set of five laser sensors and one radar sensor to detect 

obstacles and to classify terrain for off-road navigation. Three of these lasers are used to evaluate 

the terrain while the other two lasers and the radar detect obvious positive obstacles. Each of the 

sensor processing algorithms generates a cost map. The cost map is a 2-D grid, where each cell 

in the grid is associated with a cost value which represents the traversability of that cell. The 

sensor fusion algorithm generates a composite map using a weighted average of each of the 

sensor cost maps.  The terrain evaluation algorithm operates on a single line scan of the laser 

data instead of a point cloud formed by the successive line scans as the vehicle moves. This 

approach reduces the effect of imperfect pose estimation. The terrain evaluation algorithm 

operates by fitting a line to the vertical planar projection of points in vehicle width segments. 

The traversability cost is computed as a weighted maximum of the slope and the line fit residual. 

A grid based terrain representation method, where each cell in the grid, holds not only the 

elevation values of the cell but also the uncertainties associated with the elevation value is 

presented in [Miller 2006]. A set of three laser range sensors are used to scan the ground in front 

of the vehicle. Two of these sensors are fixed on the vehicle, while one sensor is mounted on a 

two axis gimbaled platform. The gimbaled platform allows the laser to be pointed in any desired 

direction. The gimbaled laser is combined in a feedback loop with the path planner to gather data 

along potential paths. The range data from all the three sensors is fused into one map. The 

probability of the association of each range reading to a particular cell is computed. The 

probabilistic model takes into account the measurement errors in the lasers itself and the error in 
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the positioning system. The laser measurements assigned to a particular cell are converted into 

an estimate of the elevation distribution within that cell. The information is stored as an estimate 

of the cell’s elevation and the associated conditional covariance. Each new measurement is fused 

with the previous measurement readings, hence there is no need to store the individual sensor 

measurement readings and only the posterior probabilities of the estimated elevation and 

variance are stored. 

A set of two Sick LMS 291 laser scanners [Trepagnier 2006] are mounted on each side of 

the front end of the vehicle. Each of these lasers scan the surrounding in a vertical plane and are 

mounted on an oscillatory platform to provide a 30° oscillating angle. Range data from both the 

lasers are fused into a common elevation grid map. The data is time stamped and hence obstacles 

are kept in memory only for a certain amount of time. If the obstacles no longer exist after a 

specified time, they are removed from the map. This helps in clearing moving obstacles, once 

they have passed. 

Team TerraMax [Braid 2006] selected an array of sensors including a forward looking 

vision system, single-plane LADAR and multi-plane LADAR. The vision system is based on 

multi stereoscopic vision and consists of three identical cameras mounted on a rigid bar in front 

of the vehicle. The three cameras form three different baselines between them. Depending on the 

speed of the vehicle one of the three camera pairs is selected. The large baseline is used for 

higher speeds to obtain a deeper field of view; the medium baseline is used for medium speed 

and the shorter baseline for slower speeds. The multi-plane LADAR is an IBEO ALASCA 4-

plane scanner that is used for positive obstacle detection. Two of the planes scan towards the 

ground and the other two scan towards the sky. The obstacle detection algorithm is based on 



 

38 

detecting the slope of the terrain. Obstacles are reported in terms of the closeness of the object 

collision to the proposed path. 
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Figure 2-1. Time of flight measurement.  
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CHAPTER 3 
RESEARCH GOALS 

Statement of Problem 

Given a vehicle capable of maneuvering autonomously and which can obtain its position 

and orientation measured with respect to a Global Coordinate system, develop a sensor 

component that will evaluate the terrain and detect obstacles to support autonomous navigation. 

The sensor component has to be developed for a full-size autonomous vehicle which can traverse 

on paved and off-road conditions at maximum speed approaching 30 mph.  The information 

should be presented in such a way that the vehicle can use it to avoid obstacles and rough terrain 

and to seek out smooth terrain. 

Research Requirements 

Assuming the availability of an autonomous vehicle platform and a positioning system, the 

steps that are required to be fulfilled to develop a sensor component, that meet the goals 

mentioned in the problem statement are as follows: 

1. Selection of appropriate sensor hardware, which is able to give the required information 
of the surrounding environment. 

2. Selection of proper computer resources to interface the sensor hardware. 

3. Design of an environment representation model. The model should not only be able to 
distinguish the region around the vehicle into traversable and non-traversable areas but 
should also be able to represent a degree of traversability or non-traversability. 

4. Development of algorithms to process the sensor data to detect obstacles and evaluate 
terrain. Combine the individual algorithms, into one fused output. The fusion process 
should be able to manage the uncertainties and the limitations associated with the outputs 
of the individual algorithms. The output of the environment should be in the above 
mentioned environment representation model. 

5. The sensor component should be developed as a Joint Architecture for Unmanned 
Systems (JAUS) component. 

6. Conduct experiments on an autonomous vehicle platform to validate the results of the 
developed sensor component. 
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The following sections discuss the autonomous platform and the positioning system used 

to develop and implement the sensor component. 

Autonomous Platform 

The development and experimentation work for the sensor component research presented 

in this dissertation has been done on the autonomous platform, “NaviGator” (Figure 3-1) 

developed in the Center for Intelligent Machines and Robotics Laboratory at the University of 

Florida. The platform was initially developed to participate in the 2005 DARPA Grand 

Challenge competition. Some of the important specifications of the platform are discussed. 

Mechanical Specifications 

The NaviGATOR’s base platform is a custom built all terrain vehicle. The frame is made 

of mild steel roll bar with an open design.  It has 9" Currie axles, Bilstein Shocks, hydraulic 

steering, and front and rear disk brakes with an emergency brake to the rear.  It has a 150 HP 

Transverse Honda engine/transaxle mounted longitudinally, with locked transaxle that drives 

front and rear Detroit Locker differentials (4 wheel drive).  The vehicle was chosen for its 

versatility, mobility, openness, and ease of development.  

Power System 

The power system consists of two independent 140A, 28V alternator systems.  Each 

alternator drives a 2400W continuous, 4800W peak inverter and is backed up by 4 deep cell 

batteries.  Each alternator feeds one of two automatic transfer switches (ATS).  The output of one 

ATS drives the computers and electronics while the other drives the actuators and a 3/4 Ton 

(approx. 1kW cooling) air conditioner.  Should either alternator/battery system fail the entire 

load automatically switches to the other alternator/battery system.  Total system power 

requirement is approximately 2200W, so the power system is totally redundant. 
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Computing Resources 

All the computing systems and electronics are housed in a NEMA 4 enclosure mounted in 

the rear of the vehicle as shown in Figure 3-2. The computing system consists of single processor 

computing nodes. The system uses a total of eight computers, each of them equipped with an 

AMD 2 GHz processor and 512 MB RAM. Each node is targeted to perform a specific function 

of the autonomous system. The system architecture discussed in detail in Chapter 5, explains the 

breakdown of the autonomous system functionality into these individual nodes. The sensor 

component developed for this research resides on one computer. 

Localization 

The NaviGATOR determines its current location using a combination of GPS and inertial 

navigation system sensor data. The processing and fusing of the navigation data is done by an 

Inertial Navigation System from Smith’s Aerospace. This system is named the North Finding 

Module (NFM). The module maintains Kalman Filter estimates of the vehicle’s global position 

and orientation, as well as linear and angular velocities.  It fuses internal accelerometer and 

gyroscope data with data from an external NMEA GPS and external odometer. The GPS signal 

provided to the NFM comes from one of the two onboard GPS systems.  These include a 

NavCom Technologies Starfire 2050 and a Garmin WAAS Enabled GPS 16.  An onboard 

computer simultaneously parses data from the two GPS units and routes the best-determined 

signal to the NFM.  This is done to maintain valid information to the NFM at times when only 

one sensor is tracking GPS satellites.  During valid tracking, the precision of the NavCom data is 

better than the Garmin, and thus the system is biased to always use the NavCom when possible. 

Contributions of this Research 

The previous sections described the autonomous platform and the available computing 

resources to be used for this research. The system explained above is the base foundation and 
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provides all the necessary resources for successful implementation of the research discussed in 

this dissertation. The contributions of this research can be summarized in short as follows: 

1. Development and implementation of an obstacle detection sensor system. 

2. Development and implementation of a terrain evaluation sensor system. 

3. Development and experimental evaluation of a new sensor fusion algorithm that combine 
the information from the obstacle detection and terrain evaluation sensor systems.  

4. Development of generalized results that determine an optimal sensor system design based 
on specific vehicle parameters. 
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Figure 3-1. Testing platform NaviGator 

 
Figure 3-2. Computing resources. 
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CHAPTER 4 
TRAVERSABILITY GRID APPROACH 

The surrounding environment of an outdoor autonomous vehicle is highly unstructured and 

dynamic. The environment consists of natural obstacles which include positive obstacles such as 

rocks, trees etc. and negative obstacles such as cliffs, ditches etc. There is a possibility of 

numerous man-made obstacles such as buildings, fence posts, and other vehicles and as well as 

many other type of objects. The terrain characteristics are also very important for safe 

navigation. The robotic vehicle should avoid rough, uneven terrain as far as possible and at the 

same time seek out smooth traversable regions. The representation model of the environment 

should not only be able to distinguish clearly defined highly non traversable obstacles but should 

also be able to represent the small differences in the terrain which would for example distinguish 

a clearly defined paved or smooth dirt path from the surrounding region. This would help to keep 

the vehicle on the road and at the same time avoid obstacles. 

In Chapter 2, two broad classifications of environment representation techniques were 

discussed; the vector based and the grid or raster based. The current research presents the 

concept of the Traversability Grid which is a grid based representation of the environment. 

Traversability Grid Representation 

The Traversability Grid representation tessellates the region around the vehicle into a 2D 

grid. Figure 4-1 shows the important parameters used to define the Traversability Grid. The grid 

is always oriented in the North-East direction with the vehicle position in the center of the grid. 

The grid is defined by the number of rows, number of columns and the resolution of the grid. It 

consists of an odd number of rows and columns to create a center cell for the vehicle. In the 

current implementation, the Traversability Grid is 121 rows by 121 columns with a half meter by 

half meter resolution. This allows a sensor to report data at least 30 m ahead of the vehicle. 
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Each cell in the grid corresponds to a small region of the environment and is represented 

by a traversability value. A traversability value of a cell defines the measure of traversability of 

that cell. The range of traversability value that can be assigned to a cell is from 0 to 15.  A real-

time sensor component can assign a traversability value between 2 and 12 based on the sensed 

environmental characteristics. A traversability value of 7 is considered to be neutral; a value 

above 7 represents a traversable region while a value below 7 represents a non traversable 

region. As the region becomes more favorable to be traversable, the traversability value of that 

cell gradually increases from 7 to 12. For example, consider a paved path surrounded by a flat 

terrain which is not as smooth as the path. Since the flat terrain surrounding the paved path is 

still traversable, it will be represented by a traversability value above 7; however, the paved path 

would be represented by a traversability value higher then the surrounding flat terrain, thus 

although the vehicle could traverse on the surrounding flat terrain, it would be more favorable to 

stay on the paved road. Similarly, as the region starts becoming non-traversable, the 

traversability value of the corresponding cell in the grid gradually decreases from 7 to 2. In case 

the vehicle has to choose to drive through a non traversable region, it would choose to drive in 

the grid cells whose traversability value is larger. The sensor component outputs a traversability 

value based on two factors: 

1. The severity of a non-traversable region (size of the obstacle or roughness of the terrain) 
or the good terrain characteristics of a traversable region (smoothness of the terrain). 

2. The confidence on the evaluated characteristic. The obstacle might be highly non-
traversable but what is the confidence on the presence of the obstacle. 

A value of 14 is assigned to a cell whose traversability value cannot be determined by the 

sensor. The remaining values are reserved for a specific purpose; the value of 0 represents out of 

bounds, 1 implies to use the same value as last time, 13 is reserved for failure or error and 15 

denotes the vehicle location. 
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Traversability Grid Implementation 

The sensor algorithms, discussed in the next chapter, implement the Traversability Grid as 

a dynamically allocated circular buffer. The circular buffer implementation of the Traversability 

Grid is very efficient in updating the grid to the new position as the vehicle moves. The main 

advantage of using a circular buffer in place of a 2-dimensional array is that for a 2-D array, as 

the vehicle moves, for every new position of the grid, data from the cells in the old grid is copied 

into the corresponding cell indices in the new grid, this expensive computing operation of 

copying the grid data every time can be avoided by using a circular buffer. Figure 4-2, shows the 

change in the grid position due to the movement of the vehicle. As shown in the figure, all the 

data corresponding to the overlapping cells in the two grids has to be copied from the old grid 

position to the new grid position for a 2-D array representation. 

The circular buffer implementation of the Traversability Grid avoids this computationally 

expensive operation. The circular buffer stores the data in the grid as a 1D array of size equal to 

the number of cells in the grid. The position of any cell corresponding to (row, column) in the 2D 

grid is mapped into the 1D circular buffer as follows, 

( )arrayPosition row numberOfColumns column= × +  (4.1) 

When the grid shifts to a new position, instead of copying data from individual cells, the 

circular buffer defines a pointer to a cell in the grid, which keeps track of the cell corresponding 

to (0, 0) in the new grid position. 

The position of this pointer is defined by two variables, ‘rowBegin’ and ‘columnBegin’. 

Initially these variables are set to (0, 0). When the grid moves to a new position, the variables are 

updated as shown in Table 4-1. 
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The updated (rowBegin, columnBegin) are the indices of a cell in the old grid, which 

correspond to the indices (0, 0) in the new grid. Thus each time the grid moves to a new position 

the above algorithm recursively keeps track of the start cell of the grid and physically all the data 

remains in the same array location. The only other operation needed is to clear the data in the 

cells which no longer overlap. 

Since the actual (0, 0) position of the 2-D grid now corresponds to the (rowBegin, 

columnBegin), a cell given by the indices (row, column) is accessed using the algorithm shown 

in Table 4-2. 

The above algorithms define the basic functioning of the circular buffer data structure.  

Any number of variables of any data type can be stored in the grid using the circular buffer 

implementation. Each of these variables would be stored as a 1-D array. At the minimum at least 

one such 1-D array is defined by a sensor component for storing the traversability values of the 

cells. This array is defined of type, unsigned char. Other arrays may be defined to store 

information about the cells which could be used internal to the sensor algorithm. 

Traversability Grid Propagation 

The Traversability Grid data structure is a common data structure representing the 

environment among all the components of the autonomous platform. Figure 4-4 shows the 

schematic diagram of the propagation of the Traversability Grid from the Smart Sensors to the 

Reactive Driver. Each of the Smart Sensor component outputs its own Traversability Grid. These 

grids are fused into a single Traversability Grid in the Smart Arbiter component. The Reactive 

Driver uses the Traversability Grid obtained from the arbiter to dynamically compute the vehicle 

speed and heading and accordingly alters its command to the Primitive Driver, while doing so 

the Reactive Driver accounts for the traversability value of each cell in the grid and seeks to 

follow the path with higher traversability values (reported by the sensors as favorable to be 
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traversable) and avoid the cells with lower traversability values (reported by the sensors as non 

traversable). 
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Figure 4-1. Traversability Grid representation. 
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Figure 4-2. Grid movement. 
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Figure 4-3. Circular buffer representation of the grid. 
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Figure 4-4. Traversability Grid propagation. 
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Table 4-1. Update the circular buffer to account for the grid movement. 
rowsMoved and columnsMoved are the number of rows and columns the grid moved. 

numberOfRows and numberOfColumns define the size of the Grid. 

( )
{

}

( )
{

}

rowBegin rowBegin rowMoved
while rowBegin numberOfRows

rowBegin rowBegin numberOfRows

columnBegin columnBegin columnMoved
while columnBegin numberOfColumns

columnBegin columnBegin numberOfcolumns

= +
>=

= −

= +
>=

= −

 

 

Table 4-2. Accessing the grid cell in the circular buffer  

( )
{

}

row row rowBegin
while row numberOfRows

row row numberOfRows

= +

>=

= −

 

( )
{

}

column column columnBegin
while column numberOfColumns

column column numberOfColumns

= +

>=

= −

 
 
The resulting (row, column) is then mapped into the 1D circular array using Equation 4.1. 
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CHAPTER 5 
SENSOR IMPLEMENTATION 

The Smart Sensor component developed to meet the research goals of this dissertation is 

named as the LADAR (Laser Detection and Ranging) Traversability Smart Sensor (LTSS). The 

LTSS component use LADAR sensors for the real-time sensing of the environment. The words 

LADAR and laser sensor are used interchangeably and they both mean the same. This chapter 

explains in detail the hardware and software implementation of the LTSS component. 

Sensor Hardware 

LADAR Sensor 

The LADAR sensor model LMS291-S05 from Sick Inc. was selected. The LMS291-S05 is 

an optical sensor that scans its surrounding with infrared laser beams two dimensionally similar 

to laser radar. An infrared laser beam is generated by the scanner’s internal diode. If the beam 

strikes an object, the reflection is received by the scanner and the distance is calculated based on 

the time of flight. The pulsed laser beam is deflected by an internal rotating mirror so that a fan 

shaped scan is made of the surrounding area. The laser scans an angular range of either 180° or 

100°. Figure 5-1 shows the field of view for the two angular range configurations. The scanner 

can be configured in three angular resolutions; 1, 0.5 and 0.25°, however the resolution of 0.25° 

can only be achieved with a 100° range. Because of the smaller beam width, the laser is more 

susceptible to false echoes due to small particles. The maximum range distance measured by the 

system is 80 m with a measurement resolution of 10 mm. A higher range resolution of 1 mm is 

available with a maximum range of 8 m. The frequency of the scan depends on the angular 

resolution used. The scanner can operate at a maximum frequency of 72 Hz if the angular 

resolution is set to 1°. However for higher resolutions the operating frequency drops down to 36 

Hz for a 0.5° resolution and 18 Hz for 0.25° resolution. 
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The range distance measured by the sensor also depends on the reflectivity of the object. 

For highly reflective surfaces the sensor can measure objects at greater distances then objects 

with low reflectivity. 

Sensor Interface 

The sensor operating voltage is 24 V DC +/- 15%. The 24 V power supply is fed to the 

sensor through the power supply system developed for the vehicle (discussed in Chapter 3). The 

sensor can be interfaced to the computer using serial communications. The serial interface 

RS232 or RS422 may be used for communication. To take advantage of the high frequency 

LADAR data, the data has to be transferred at a baud rate of 500 Kb. Hence the RS422 interface 

is selected which allows data transfer at the higher baud rates. The RS422 interface is achieved 

via a high speed USB to serial hub from Sealevel (part # 2403). Figure 5-2 shows the RS422 

serial interface connections diagram. 

Computing Resources and Operating System 

The LTSS component was developed on a single computing node. The node is equipped 

with an AMD 2GHz processor, 512 MB ram and a 1 GB compact flash solid state hard drive. 

The software is developed and tested on a Linux operating system. The Linux version Fedora 

Core 3 was used to develop and test the software. All the software was developed using the C 

programming language. The GCC compiler with the built-in libraries for math functions, 

multithreading, socket communications and serial communications were used for the software 

development. 

Sensor Mount 

Figure 5-3 shows three LADARS mounted on the NaviGator. Two of these LADARS are 

mounted on a specially designed sensor cage on the top of the front end of the vehicle. The 

design of the mounts for these LADARS allows them to be mounted at different angular 
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configurations. Figure 5-4, shows the design of these mounts. The LADARS are mounted facing 

towards the ground at different angles. These two LADARS continuously scan the ground in 

front of the vehicle. The third LADAR is mounted on the bumper level parallel to the ground 

plane. 

Sensor Algorithms 

So far, the concept of the representation of the environment as a Traversability Grid was 

discussed in Chapter 4 and the previous section discussed the actual sensor hardware used to 

sense the environment. Now, the mathematical approach and the software implementation of the 

LTSS component is explained. As mentioned in the problem statement the goal of the developed 

Smart Sensor component is to detect obstacles and evaluate the terrain surrounding the vehicle. 

To achieve this goal, the LTSS component implements a number of different algorithms. 

Figure 5-5 shows a block diagram overview of the LTSS component. The input to the 

component is the raw range data from the lasers and the position and orientation of the vehicle 

and its output is the Traversability Grid which represents the state of the environment at the 

current time. The block diagram gives an overview of the different algorithms and flow of the 

outputs of each of these algorithms to form the output Traversability Grid. As shown in the 

Figure 5-5 the component consists of three distinct parts: 

1. Obstacle Detection: The obstacle detection (OD) algorithm receives raw range data from 
the LADAR at the bumper level and outputs a Traversability Grid. 

2. Terrain Evaluation: The terrain evaluation (TE) algorithm receives raw range data from 
the top two LADARS mounted on the sensor cage. Each of these two LADARS feed data 
into an individual terrain evaluation grid, which are then combined. 

3. Sensor Fusion: The sensor fusion algorithm combines the outputs from the OD algorithm 
and the TE algorithm and produces a fused Traversability Grid. The fused Traversability 
Grid represents the results of the LTSS component and acts as an input to the Smart 
Arbiter like any other Smart Sensor component. 



 

56 

The following sections discuss in detail the different algorithms and the fusion process used to 

combine these algorithms. 

Obstacle Detection 

The LADAR sensor used for the obstacle detection (OD) algorithm is mounted at bumper 

level, scanning in a plane parallel to the ground at a height of 0.6 m. This height of 0.6 m may be 

defined as a threshold value. An obstacle of height greater than the threshold value is a positive 

obstacle and anything below the threshold value is free space. The LADAR is set to scan at an 

angular range of 180° range with a 0.5° resolution. Figure 5-1 A shows the field of view of this 

sensor. 

The OD algorithm can be divided into two parts, the mapping of the laser range data into 

the Global coordinate system and then evaluating each Cell based on the mapped data. 

The range data is mapped into 2D Cartesian coordinates in the Global coordinate system. 

As mentioned before the global coordinate system is always oriented in the North-East direction 

and its origin is the centerline of the vehicle at ground level below the rear axle (i.e., the 

projection of the GPS antenna onto the ground). After each scan of 180° the range data from the 

laser is converted into the Global coordinate system. This conversion is done in two steps. First 

the data is converted from polar coordinates to Cartesian coordinates local to the sensor as 

follows: 

0

_ sin 0
_ 0 cos

S x sensor range
P

y sensor range
α

α
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (5.1) 

where 

0

_
_

S x sensor
P

y sensor
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 is the data point in the sensor coordinate system. 
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The second transformation takes into account the vehicle orientation and the sensor offset 

distance and transforms the data point from the sensor coordinate system to the global frame. 

The OD algorithm is based on the weighted sum of evidences. The traversability value of a 

cell is computed based on the weighted sum of the evidence of the cell being occupied or free. 

The evidence of a cell being an obstacle or free space is derived based on the current sensor 

observation and initial evidences. A sensor observation may be defined as an outcome of the 

sensor measurement used to evaluate the state of the system.  

The sensor observation is managed internally using the two variables, ‘OccupiedHits’ and 

‘FreeHits’ for each cell. After each laser scan the range measurements are transformed into 

observations. For each single coordinate generated from the range value, the cell to which this 

coordinate belongs in the Traversability Grid is determined, followed by all of the intervening 

cells between the determined cell and the sensor. Bresenham’s line algorithm [Foley 1990] and 

[Novick 2002] is used to determine the indices of the intervening cells. The ‘OccupiedHits’ 

buffer is incremented by one for the cell which receives the hit and the ‘FreeHits’ buffer is 

incremented by one for all the intervening cells. For cases where the received range value is 

beyond the Traversability Grid map, the cell at the intersection of the line formed by the range 

value and the sensor origin with the bounds of the grid map is found. For all the cells on this line 

the ‘FreeHits’ is incremented by one. 

The evidence of a cell being occupied or free is computed as 

( ) ( )1 1*occ occW t W t OccupiedHits k FreeHits= − + −  (5.2) 

( ) ( )1 2*free freeW t W t FreeHits k OccupiedHits= − + −  (5.3) 

where 

k1 and k2 are configurable parameters. 
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The first term in the Equations 5.2 and 5.3, is the initial weight of evidence. The initial weight of 

evidence defines the state of the system before the current sensor observation. These initial 

weights could be viewed as a Markovian model. A Markov Chain is defined as a process where 

the future may be stochastic but no variables prior to the current state may influence the 

stochastic evolution of future states. Thus, all the information of the past state of the system is 

represented by these initial weights. 

The second term in the above equations is the sensor observations. The observation 

OccupiedHits strengthens the evidence of an obstacle and the observation FreeHits strengthens 

the evidence of free space. 

The third term in both the equations above acts as a parameter to adjust the speed of 

response of the system. For example in the case of moving obstacles, once the obstacle is clear, 

the third term in Equation 5.2 helps in fast recovery of free space. It also helps in clearing 

spurious ground noise. Similarly, in the case where a cell is occupied by a moving obstacle the 

third term in Equation 5.3 helps in fast recovery of occupied space. Note however that for the 

case of fixed distinguishable obstacles the last terms of these equations tend to cancel each other 

and hence do not have a major impact on the algorithm. 

After computing the weights of evidence for each cell, the weighted sum is computed as: 

*sum occ freeW W Wρ= −  (5.4) 

where 

ρ  represents the ratio of evidence of a cell being occupied to a cell being free. 

ρ  is a tunable parameter. The value of ρ  for current experimental results is selected as 1/6. 

Finally the weighted sum value of the cell is mapped to the Traversability Value. The mapping 

from the Wsum to Traversability Value is exponential as shown in Figure 5-7. 
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The algorithm is very similar to the Bayes filter discussed in Chapter 2, since any 

algorithm that increments and decrements a state variable (in our case occupied or free), in 

response to sensor measurements can be interpreted as a Bayes filter. The main difference 

between the current algorithm and the Bayes filter is that, the Bayes filter computes the 

probability of one state variable, occupied or free-space. The other variable is just the negation of 

the computed variable. In this case both the state variables are computed and then a weighted 

average of these variables is performed. 

The OD identifies positive obstacles and renders no opinion regarding the smoothness or 

traversability of areas where no positive obstacle is reported. Hence it reports Traversability 

values from 2 to 7. A cell with a value of 2 has a high probability of a positive obstacle while a 

cell with a value of 7 is free space. A traversability value higher than 7 is not assigned to a cell 

since it is not known if the free space is a smooth traversable path or a rough terrain or even a 

negative obstacle.  

Terrain Evaluation 

In the terrain evaluation (TE) algorithm the terrain in front of the vehicle, is mapped with 

the laser. A Cartesian elevation map is built from the successive laser scans and the positioning 

system readings corresponding to these scans. From the 3-dimensional map, the terrain is 

classified based on the geometry of the terrain. A set of classification features is generated by 

performing statistical analysis on the terrain map. 

Two LADAR systems are used to map the terrain. These two LADAR’s will be identified 

as TerrainLADAR1 and TerrainLADAR2. The TerrainLADAR1 is mounted at an angle of 6° 

and the TerrainLADAR2 is mounted at an angle of 12° facing forward towards the ground. Both 

these LADAR’s are mounted at a height of 1.9 m above the vehicle ground level. The two 

LADAR’s populate two different maps of the terrain and each terrain map is classified 
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individually. The range readings from the two different lasers are not mapped into a common 

terrain map, since the two lasers scan the same part of terrain at different time and hence would 

have a built-in GPS localization error in these two sets of readings. 

The LADAR’s are set to a configuration of 100° angular range and 0.25° angular 

resolution. Figure 5-8 shows the schematic of the field of view of the two lasers. With this 

configuration and for nominal conditions (flat ground surface, vehicle level), the 

TerrainLADAR1 scans at a distance of ~18 m ahead of the vehicle and ~43 m wide and the 

TerrainLADAR2 scans the ground at a distance of ~9 m ahead of the vehicle and ~21.4 m wide. 

Terrain Mapping 

After each complete scan of 100° the range data reported by the lasers are mapped into 3-D 

point clouds. The data points are stored in the corresponding cells of the Traversability Grid as a 

linked list of 3-D Cartesian coordinates. The conversion from the range data to the 3-D point 

cloud is done in the steps as explained. 

The range data reported by the laser is converted into Cartesian coordinates local to the 

sensor. The local sensor coordinate system has its origin coincident with the origin of the laser 

beam and the X-Y plane coincident with the laser scanning plane. The local sensor coordinates 

are computed from the range information as follows: 

*sin
*cos

0.0

l

l

l

x range
y range
z

α
α

=
=
=

 (5.5) 

where 

α is the angle of the laser beam with respect to the y-axis of the sensor coordinate system. 
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Next, the local sensor coordinate is converted into the vehicle coordinate system. The 

vehicle coordinate system has its X-axis in the direction of the vehicle, and Z-axis vertically 

down. 

*cos

*sin

v l offset

v l offset

v l offset

x x x

y y y

z x z

θ

θ

= +

= +

= +

 (5.6) 

where 

θ is the laser tilt angle with the horizontal plane and 

(xoffset, yoffset, zoffset) is the position of the sensor origin in the vehicle coordinate system. 

The data is then transformed into the global coordinate system attached to the vehicle as 

well as a fixed global coordinate system by taking into account the vehicle orientation. The 

transformation from the local to global coordinate system attached to the vehicle is given as 

follows: 
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 (5.7) 

where 
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 are the global coordinates of the point, 

( ), ,ψ θ φ  are the yaw, pitch and roll respectively and 

( , , )o o ox y z  are the sensor coordinates in the global coordinate system.  
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The fixed global coordinate system has similar orientation as the global coordinate system 

attached to the vehicle, but the origin is at a fixed point whereas the origin of the global 

coordinate system attached to the vehicle moves with the vehicle. The fixed origin is necessary 

to take into account the vehicle motion to build the point cloud. The coordinates of the data point 

in the fixed coordinate system are computed by adding the vehicle coordinates to the global 

coordinates obtained above. The data point is stored in the cell corresponding to the location of 

the point. The coordinate system attached to the vehicle gives the location of the point in the 

Traversability Grid. 

The maximum number of data points that can be stored in one cell is limited by a 

configuration variable. In case the maximum number of data points in a cell is reached, the next 

new data point is compared with the already existing list of data points. If the coordinates of the 

new data point does not match with any of the existing data points, the first data point stored in 

the link list is replaced by the new data point. The new data point is assumed to match with the 

already existing data point if it is contained in a 0.1m cube centered on the old data point. After 

the mapping of the data points is complete the next step is the classification of the Traversability 

Grid. 

Terrain Classification 

Each cell in the Traversability Grid is evaluated individually and classified for its 

traversability value.  The following geometrical features are used for the classification: 

1. The slope of the best fitting plane through the data points in each cell. 

2. The variance of the elevation of the data points within the cell. 

3. The weighted neighborhood analysis. 

4. Negative obstacle algorithm. 
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The first three of these criteria are used for the classification of the laser data from both the 

LADAR’s. The negative obstacle algorithm is implemented only for the data from the 

TerrainLADAR2. 

Classification based on the slope of the best fitting plane 

The slope feature helps in distinguishing discontinuous terrain or obstacle surfaces from a 

gradual slope. The classification of the terrain is based on the fact that the traversability of the 

vehicle decreases with the increase in the slope of the terrain. 

The slope of the terrain is computed as the tangent of the angle between the X-Y (ground) 

plane and the computed plane of the terrain. The slope value is computed individually for each 

terrain patch corresponding to the respective cell in the Traversability Gird. Based on the data 

points in the cell, the terrain patch is approximated as a planar surface using the least squares 

error approximation. 

To approximate the plane of the terrain patch a minimum of three data points must be 

present in the cell. The equation for the best fitting plane, derived using the least squares solution 

technique, is given as: 

( ) bGGGS TT
optimum

1−
=  (5.8) 

where: 

optimumS  is the vector (Sx, Sy, Sz)  perpendicular to the best fitting plane 

G  is an n × 3 matrix given by: 
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b  is a vector of length ‘n’ given by: 
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Assuming iD0  equal to 1, Equation 5.8, is used to find optimumS  for the data points within 

each cell.  Chapter 5 of [Solanki 2003] provides a thorough proof of the Equation 5.8 for finding 

the perpendicular to a best fitting plane given a set of 3-D data points. Once the vector 

perpendicular to the best fitting plane is known, the slope of the computed plane with respect to 

the X-Y (ground) plane is computed as follows: 

( )2 2
x y

z

S S
Slope

S

+
=  (5.9) 

The above computed slope value represents the tangent of the angle between the best 

fitting plane and the ground plane. This value is used to assign the traversability value. The 

assignment of the traversability value is heuristic and based on comparing the classification 

results with the actual terrain conditions. Table A-1 lists the mapping of the slope value to the 

traversability value used in the experiments for this research. Instead of showing the tangent of 

the angle, the Table A-1, shows the value of the angle between the best fitting plane and the 

ground plane. 

Classification based on the variance 

The variance is a measure of the dispersion of data. The dispersion of data is defined as the 

extent to which the data is scattered about the zone of central tendency. The variance is defined 

as the sum of the squares of the deviations from the mean value divided by the number of 

observations. For the terrain classification problem, the variance of the data in the Z direction is 

an important parameter. The variance of the data points in the Z direction gives an indication of 
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the traversability of the terrain. A higher value of the variance indicates a rougher, uneven and 

hence less traversable terrain while decrease in the variance indicates a smoother, traversable 

terrain condition. From the data points within each cell, the variance of the terrain patch 

corresponding to the respective cell is measured as follows: 

 ( )2

var iZ
iance

n
μΣ −

=  (5.10) 

where μ  is the mean height of the cell given as: 

iZ
n

μ Σ
=  (5.11) 

Zi is the elevation of the data point, and 

n is the number of data points. 

The variance value computed using the Equation 5.11, is mapped to a traversability value 

which is assigned to the cell. The mapping from the variance value to the traversability value is 

heuristic and based on classification results obtained from driving through different terrain 

conditions. The mapping variables are stored as configuration parameters in the config file. The 

mapping values used in the experimental results of this dissertation are shown in Table A-2. 

Weighted Neighborhood Analysis 

As discussed in Chapter 2, a few research papers [Ye 2004] use the mean height as a 

criterion for evaluating the terrain. However, using absolute height as a parameter to evaluate 

terrain often results in misclassification of the terrain especially in case of uphill and downhill 

slopes. Instead of evaluating terrain based on the absolute height of each cell, a measure of 

terrain evaluation presented here is to compare the height of neighboring cells. The comparison 

of the neighboring cells gives an indication of the discontinuity in the terrain between the two 

cells.  
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One of the difficult problems in neighborhood analysis is determining the extent of 

neighboring cells to use for comparison. Figure 5-9 shows the application of neighborhood 

analysis in the present context. Assuming that the current position of the vehicle is on a 

traversable region, consider the mean height of the center cell of the grid as ideal (the vehicle is 

always in the center of the grid). Now, move out from the center cell and compare the mean 

height of each of the cells adjacent to the center cell with the height of the center cell. As the 

cells examined expand from the center compare the height of each cell to be evaluated with the 

neighboring cells that are between the vehicle (i.e., the center cell) and the cell being evaluated. 

The idea here is that since these neighboring cells fall in between the vehicle position and the 

cell being evaluated, for the vehicle to travel through the cell, it has to pass through these 

neighboring cells. Hence if the terrain is discontinuous between the cell under consideration and 

the neighboring cells, then the cell is less likely to be traversable. For any cell in the grid there 

are three neighboring cells as shown in Figure 5-9, which fall in between the cell and the center 

of the grid. These three neighboring cells are the cell in the adjacent row, the cell in the adjacent 

column and the diagonally adjacent cell. Since there are more than one cell which is adjacent to 

the cell being evaluated an algorithm to decide on the importance of each neighboring cell is 

designed. The algorithm takes into consideration, that the importance of each of the individual 

neighboring cells is dependent on the position of the cell under consideration in the grid. For 

example, for a cell which is in the diagonal direction of the grid the diagonally neighboring cell 

will have more weight age then the neighboring row and column cell. Similarly the cells which 

are towards the center row of the grid will have more weight age on the neighboring column cell 

and the cells towards the center column of the grid will have more weight age on the neighboring 
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row cell. Each neighboring cell is assigned a weight, which is computed based on the position of 

the cell in the grid. 

For any cell in the grid, compute the unit vector in the direction from the cell to the center 

of the grid. The neighboring cells are the adjacent cells that are closer to the center. These are 

assigned weights depending on the position of the vector. Consider a unit vector, ˆ ˆv ai bj= + , 

which represents the direction from a cell to be evaluated to the center of the grid (vehicle 

position). The i component of the vector is in the direction of the neighboring row cell and the j 

component is in the direction of the neighboring column cell discussed above. The neighboring 

row, column and diagonal cell are assigned weights c1, c2, and c3 as follows: 
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 (5.12) 

From the Equations 5.12, it can be seen that the weights are chosen based on the 

components of the unit vector in each of the directions. These weights are normalized so that the 

sum of the weights is always 1. 

A weighted neighborhood analysis is then done for the cell being evaluated. Thus, 

depending on the height difference between the cell being evaluated and the neighboring cells, a 

traversability value is assigned to the cell. For example, consider the cell shown in Figure 5-9. 

The neighborhood cell analysis value is calculated as follows: 
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 (5.13) 

where 

( ),h i j  is the height of the cell in row i and column j.       

The above computation is shown for a cell in the first quadrant of the grid. Similarly for the cells 

lying in the different quadrants of the grid, the corresponding neighboring cells are selected 

using the scheme discussed above. The cells in the center row and the center column are treated 

as special cases and the neighborhood analysis of these cells is done by comparing them with 

only one cell, which is the neighboring cell directly in between the cell being evaluated and the 

center of the grid. 

The neighborhood analysis value obtained for each cell from the above calculations is 

mapped to a traversability value. Again in this case the mapping is heuristic and is saved as 

configuration parameters in the config file. Table A-3 shows the mapping of the Weighted 

Neighborhood analysis value to the traversability value used in the current experimental results. 

Negative Obstacle Detection 

In a rough outdoor environment, negative obstacles such as big holes or cliffs on the side 

of the road are very common. With the laser range sensor, the only information one can obtain is 

the distance of the object (terrain surface or obstacle) hit by the laser beam. With this 

information, the terrain map was built and algorithms were developed to classify terrain. 

However in case of voids, empty space, the only important information that can be used from the 

laser data is that the region in between the laser and the laser range reading is a free space. The 

negative obstacle algorithm makes use of this information to give an estimate if the free space is 

negative obstacle. 
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The algorithm compares each range reading obtained from the laser to the expected range 

reading. The expected range reading is computed based on the geometry of the laser beam. The 

unit vector in the direction of the laser beam is known since the laser is fixed with respect to the 

vehicle and the vehicle orientation is known. Expecting good terrain condition, it is assumed that 

the region in front of the vehicle is a level ground in the plane of the vehicle. From the geometry 

of the laser beam (i.e., the line vector in the direction of the laser beam) and the assumption of a 

level ground (X-Y plane) the expected range reading is computed by solving the problem of the 

intersection of a plane and a line.  

Consider a unit vector in the direction of the laser beam. The unit vector is expressed in the 

Laser coordinate system using Equation 5.5. The unit vector is then transformed to the vehicle 

orientation and subsequently to the global orientation using Equations 5.6 and 5.7. The sensor 

offset terms in Equation 5.6 are not considered, since it is only the direction of the vector which 

needs to be expressed in the global orientation frame. 

The expected range distance in the direction of the unit vector is computed using the 

information that the z-component of the expected range vector expressed in the global 

orientation frame with the origin attached to the sensor is equal to the height of the laser above 

the ground plane. The expected range is given as: 

( )/ rd h e k= •
 (5.14) 

where 

d is the range distance from the sensor origin to the point of intersection, 

h is the height of the sensor above the vehicle ground plane and  

er is the unit vector representing the direction of the laser beam in the global coordinate 

system. 
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The expected range reading is subtracted from the actual reading obtained from the laser 

and the difference is used as a factor to assign traversability value. If the difference is less than a 

threshold value, the algorithm concludes that ground exists (positive obstacle or smooth flat 

terrain) and does not report anything. However, if the difference is above the threshold value, the 

possibility of a negative obstacle is assumed. The cell in the Traversability Grid which would 

otherwise register the expected reading (in case of flat ground plane) is assigned a traversability 

value. This cell would lie on an imaginary plane formed as an extension of the vehicle ground 

plane similar to the one shown in Figure 5-10. The cell can easily be found since the range vector 

in the Global coordinate system is already known from the Equation 5.14 and it just needs to be 

transformed from the sensor origin to the vehicle origin (center of the Traversability Grid). 

The severity of assigning this cell as a negative obstacle; increases with the increase in the 

difference in the actual and expected range distance readings.  The algorithm assigns a 

traversability value between 2 and 7, since it is seeks only negative obstacles and does not render 

any opinion on smoothness or good terrain conditions. 

The algorithm is very sensitive to the tilt angle of the laser with respect to the ground 

plane. The algorithm cannot distinguish between the severities of negative obstacle if the change 

in the slope of the ground plane is greater than the tilt angle of the laser. The TerrainLADAR2 

sensor is tilted at an angle of 12° towards the ground and the TerrainLADAR1 is tilted at an 

angle of 6° towards the ground. TerrainLADAR2 sensor would be able to distinguish between 

traversable path and negative obstacle as long as the change in the slope of the traversable path is 

less then 12° and if this change is greater then 12°, there is a high probability of a false positive 

being registered. For the TerrainLADAR1 this allowable change in slope is limited to only 6°. 

Hence, the above algorithm is implemented only for the data from the TerrainLADAR2 sensor. 
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The probability of registering a false positive also depends on the vehicle orientation. For 

example, in cases where the vehicle is on a horizontal ground plane and there is a down hill slope 

in front of the laser, with magnitude greater than the laser tilt angle, the algorithm would indicate 

a negative obstacle irrespective of whether the slope is a gradual, smooth downhill slope or it is a 

sudden discontinuity in the terrain. However, if the vehicle orientation is pitched up i.e., the 

vehicle is on an uphill slope, the output from the algorithm would depend on the vehicle 

orientation angles, since the direction of the laser beam depends on the vehicle orientation 

angles. 

The negative obstacle detection algorithm assigns traversability values only to the cells, 

which do not register any data points from the terrain mapping algorithm. If there are data points 

present in the cell, the cell is not considered to be evaluated for negative obstacle. 

Terrain Evaluation Output 

The previous sections discussed the four algorithms used to evaluate the terrain 

characteristics. These algorithms are implemented separately on each of the two sensor data. 

Figure 5-5, showed the overall block diagram of the LTSS component. From the figure it can be 

seen that, the terrain is evaluated by processing the data from each of the Terrain LADAR’s 

separately. The blocks terrain evaluation 1 and terrain evaluation 2, represent the terrain 

evaluation process for the two LADAR’s. A more elaborate picture of the terrain evaluation 1 

block is shown in the Figure 5-11. As discussed in the previous sections and as shown in the 

figure, the laser data is first mapped into a terrain model. This terrain map is then input to each of 

the terrain evaluation algorithms. The Traversability Grid output from the terrain evaluation 1 

block is the fusion of the traversability values obtained from each of the algorithms. 

The slope and the variance algorithms evaluate the cell based on the data across each 

single cell. Each of these algorithms would work better than the other depending on the terrain 
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condition being evaluated. The average of the slope and variance based traversability values 

gives an evaluation of the cell based on the data within the cell. The nearest neighborhood 

analysis evaluates the cell based on the discontinuity in the data between cells. The output of the 

terrain evaluation 1 block is the minimum of the value above two values. 

The traversability values from the terrain evaluation algorithm implemented on the 

TerrainLADAR2 is obtained using a similar equation as 5.15. Except in the case of 

TerrainLADAR2, if there is no data present in a particular cell and that cell has been evaluated 

by the negative obstacle detection algorithm, the cell would be assigned a traversability value 

from the negative obstacle detection algorithm. All the other cells which do not contain any data 

and which have not been evaluated by the negative obstacle detection algorithm are considered 

to be not in the field of view of the sensor and hence traversability value of 14 (unknown) is 

assigned to the cell. 

A simple averaging algorithm combines the outputs of the terrain evaluation 1 and terrain 

evaluation 2. The computed average is the traversability value of the cell based on the terrain 

evaluation: 

1 2

2
TTV TTVTTV +

=
      5.16 

where, 

TTV is the traversability value of the cell based on terrain evaluation, 

TTV1 is the traversability value of the cell assigned by the terrain evaluation 1, 

TTV2 is the traversability value of the cell assigned by the terrain evaluation 2. 

Advantages and Limitations of the OD and TE Sensor Algorithms 

The experiments conducted with the above sensor algorithms reveal the following 

advantages and limitations 
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1. The obstacle detection (OD) algorithm can be used only for positive obstacles; it gives no 
opinion on the smoothness of the terrain and negative obstacles. 

2. In off-road conditions the OD generates a lot of ground noise. Most of the noise is due to 
misclassification of an approaching uphill slope or due to going down a hill transitioning 
into flat ground. 

3. However the OD algorithm is not as complex as the terrain evaluation (TE) and it does 
not have to create a 3-D point cloud. It is very reliable in identifying positive obstacles. 
The grid is updated about 35 times a second in the region bounded by the field of view of 
the sensor. In this region moving obstacles which have passed are cleared in the grid and 
if a moving obstacle shows up in the grid, the grid will be updated. 

4. Since the OD algorithm does not depend on mapping the true coordinate of the point; but 
just checks to see if the point belongs to a cell, the error in mapping the obstacle is very 
small compared to the TE algorithm 

5. The main concern with the TE algorithms is modeling the ground plane. Since the data is 
collected in successive scans, the ground plane of the vehicle changes. Thus each time the 
points are registered with a different reference plane. In cases where the vehicle is on flat 
smooth terrain this is not a problem. However, in cases of uneven terrain, it is very 
difficult to relate the data in a common ground plane. Although the points are registered 
in a fixed global frame there is some error associated with the registration process and 
experiments have shown the magnitude of the error depends on the condition of the 
terrain. 

6. Since the look ahead distance of the Terrain LADAR’s is limited by the tilt angle of the 
laser, in the present case TE algorithm is effective for a range of only up to 18 m. It does 
not provide any information of obstacles further than this distance. 

7. The TE algorithm maps moving obstacle as part of the terrain and hence does not clear 
them after they have passed from the grid. 

8. In spite of the above disadvantages of the TE, the algorithm actually maps the 
surrounding into a 3D point cloud and characterizes the terrain based on slope, variance 
and discontinuities, and hence the classification is based on more detailed information of 
the surrounding as compared to the OD. 

The conclusion that can be drawn from the discussion and actual implementation of the 

OD and TE sensors is that these sensors provide very good classification results in a limited 

range of environmental conditions. However, much uncertainty is associated with these two 

sensor implementations, when using them in the real world heterogeneous environment. The 



 

74 

following section presents an uncertainty management tool, which is used to fuse the outputs 

from these two algorithms. 

Fusion of the Sensor Components 

In the previous sections two different sensor algorithms, the OD and the TE were 

developed and the advantages and disadvantages of each were discussed. To take advantage of 

each sensor algorithm and at the same time overcome some of its limitations, the outputs from 

the above sensors are fused together using a simple rule-based forward reasoning scheme. The 

uncertainties associated with the two sensors are combined using certainty factors [4]. The 

certainty factor (CF) formalism presents an approach to combine evidences supporting or 

contradicting a hypothesis. As opposed to the Bayesian analysis where only those evidences 

supporting a hypothesis can be combined, the certainty factor formalism provides a mechanism 

to combine contradictory evidences. The certainty factor value for a particular hypothesis is 

between -1.0 and 1.0. The CF value of 1.0 represents complete confidence on the hypothesis 

while a CF value of -1.0 represents a complete confidence against the hypothesis. In the present 

case, a CF value of 1.0 indicates complete confidence in the presence of an obstacle or highly 

non traversable region while a CF value of -1.0 represent a highly traversable and smooth region. 

The value of 0.0 represents a cell which does not show any confidence either towards the 

presence of an obstacle or towards a desirable traversable path. The rule based reasoning scheme 

assigns different CF values to each of the sensors based on the observed readings. Information 

such as the mean height of the cell is used in determining the confidence level whether the sensor 

should be able to see the obstacle. 

The traversability values obtained from each of the sensors is converted into the evidence 

of the presence of an obstacle or presence of a traversable path. The confidence on the evidences 

presented by each of these sensors is represented as, 
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evidenceODCF  is the evidence of the presence of an obstacle detected by the OD algorithm. As 

discussed in the previous sections, since the OD sensor does not give any input on the traversable 

path, the value of this variable is between 0.0 (representing traversability value of 7) and 1.0 

(representing traversability value of 2) depending on the presence of Obstacle. 

evidenceTECF  is the evidence of the traversability or non-traversability of the cell detected by 

the TE sensor. The value of this variable is between -1.0 (traversability value of 12) and 1.0 

(traversability value of 2) depending on the traversability of the cell. 

The pseudo code for the implementation of the fusion of these two sensor algorithms is 

presented below.  

ODCF  and TECF  are the certainties associated with the respective sensors depending on 

which rule executes. 

LTSSCF  is the combined CF value. 

The following scheme is applied: 
 
Case 1: The OD indicates the Cell is OCCUPIED 
 
 IF TE = UNKNOWN 
 THEN  

1.0OD evidenceOD

LTSS OD

CF CF
CF CF

= ×
=

 

 
 IF TE = NON-TRAVERSABLE 
 THEN 

  

( )

1.0
1.0

1

OD evidenceOD

TE evidenceTE

LTSS OD TE OD

CF CF
CF CF
CF CF CF CF

= ×
= ×

= + × −

 

 
 
 IF TE = TRAVERSABLE 
 THEN 



 

76 

  

( )

0.9
0.9

1 min ,

OD evidenceOD

TE evidenceTE

OD TE
LTSS

OD TE

CF CF
CF CF

CF CFCF
CF CF

= ×
= ×

+
=

−

 

 
Case 2: The OD indicates the Cell is FREE 
 

IF TE = UNKNOWN 
 THEN  

LTSS ODCF CF=  
 
 IF TE = NON-TRAVERSABLE 
 THEN 
  IF (Mean Height <= 0.6m) 
  THEN 1.0TE evidenceTECF CF= ×  
  IF (Mean Height > 0.6m && Mean Height < 0.8m) 
  THEN 0.8TE evidenceTECF CF= ×  
  IF (Mean Height >= 0.8m) 
  THEN 0.2TE evidenceTECF CF= ×  
    

LTSS TECF CF=  
 
 IF TE = TRAVERSABLE 
 THEN  

1.0TE evidenceTE

LTSS TE

CF CF
CF CF

= ×
=

 

 
Case 3: The OD indicates the Cell is UNKNOWN 
 

 
1.0TE evidenceTE

LTSS TE

CF CF
CF CF

= ×
=

 

 
The CF values are mapped back into the traversability value. As discussed earlier, -1.0 

corresponds to a value of 12, with 7 corresponding to a value of 0 and 1.0 corresponding to a 

value of 2. Should one of the sensors fail to report, all the values in the grid for that sensor are 

marked as unknown, and the above scheme would give the output from the other sensor as the 
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fused output. Hence, the fusion process is modular in the sense that each one of the sensors 

output would still be valid as a final output should the other sensor fail. 

Implementation of the LTSS as a JAUS component 

The LTSS is implemented as a JAUS component. This section starts with a brief overview 

of the JAUS architecture followed by the JAUS implementation on the autonomous test 

platform, NaviGator. Finally a detailed explanation of the implementation of the LTSS as an 

experimental JAUS component is given. 

Joint Architecture for Unmanned Systems 

The Joint Architecture for Unmanned Systems (JAUS) [JAUS] is an architecture defined 

for use in the research, development and acquisition of unmanned systems. The two main 

purposes for the development of JAUS are to support interoperability amongst heterogeneous 

unmanned systems originating from different developers and to support the reuse/insertion of 

technology. To ensure that the architecture is applicable to the development of entire domain of 

unmanned systems the following constraints are imposed on JAUS; platform independence, 

mission isolation, computer hardware independence and technology independence.  JAUS is a 

component based, message passing architecture that specifies data formats and methods of 

communication among computing nodes. The JAUS system architecture is defined in a 

hierarchical structure. The system topology is shown in the Figure 5-12. The different levels of 

the architecture are defined in the following terms: 

System: A system is comprised of all the unmanned systems and human interfaces meant 

for a common application. 

Subsystem: A subsystem is a single or more than one unmanned system which can be 

defined as a single localized entity within a system. The autonomous platform, Navigator 

which has been developed at CIMAR may be defined as a single JAUS subsystem  
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Node: A JAUS node defines a distinct processing capability within the subsystem. Each 

node runs its own node manager component to manage the flow and control of JAUS 

messages. 

Component: A component provides a unique functional capability for the unmanned 

system. A JAUS component resides wholly within a JAUS node. More then one 

components may reside on a single node. 

Instances: Instances provide a way to duplicate JAUS components. All components are 

uniquely addressed using the subsystem, node, component and instance identifiers. 

JAUS defines a set of reusable components and the messages supporting these 

components. However, JAUS does not impose any regulations on the configuration of the 

system. JAUS also allows the development of experimental components for performing tasks 

which otherwise cannot be performed by the already defined JAUS components. The only 

absolutely necessary requirement that has to be satisfied for the implementation of JAUS is that 

all JAUS components can communicate between each other only through JAUS messages. 

JAUS System Architecture on the NaviGator 

In the hierarchical structure of the JAUS system, the NaviGator is defined as a fully 

independent JAUS subsystem.  The NaviGATOR system architecture is formulated using the 

existing JAUS defined components wherever possible. Experimental JAUS components are 

developed for the tasks which did not have a JAUS component. A JAUS compliant messaging 

system is used to define all the communication between components. The sensor component 

developed in this research is an experimental JAUS component. 

Each of the rectangular blocks shown in Figure 5-13, is a JAUS component. From the 

autonomous functionality view point, at the highest level, the Navigator system architecture is 

categorized into four fundamental elements. These elements are: 
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1. Planning element: The components that act as a repository for a priori data. These 
components perform off-line planning based on the a priori data. 

2. Control element: The components that perform closed loop control in order to keep the 
vehicle on a specified path. 

3. Perception element: The components that perform the sensing tasks required to locate 
obstacles and to evaluate the smoothness of terrain. 

4. Intelligence element: The components that determine the best path segment based on the 
sensed information. 

As stated in Chapter 4, the Traversability Grid is the common data structure used to 

represent the environment in all the above components. The components in the perception 

element represent the world as a Traversability Grid based on real-time perception, the 

components in the planning element represent the world around the robot as a Traversability 

Grid based on a priori information, the components in the intelligence element utilizes these 

Traversability Grids to plan the best possible path and the control element executes the planned 

path. The complete loop of perception, planning and control is repeated continuously at about 40 

Hz. The following section explains in detail the implementation of the LTSS as a JAUS 

component which comprises of all the sensor algorithms discussed above. 

Implementation of the LTSS as a JAUS component 

The LTSS JAUS component is developed using C programming language in the Linux 

Operating system environment. The LTSS and all the other JAUS components on the NaviGator 

are implemented as finite state machines. At any point of time, each component can assume one 

of the seven states enumerated as; Startup, Initialize, Standby, Ready, Emergency, Failure and 

Shutdown. Of these the Emergency state is not used in the LTSS component; the Failure state is 

used to report any type of failure, such as failure to allocate dynamic memory or failure to create 

service connections and the Shutdown state is called during shutdown of the component to end 
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all the processes in a proper sequence. The important operations in the other states are in the 

following sequence: 

Startup state: The component is checked into the system and obtains instance, node and 

subsystem identification numbers from the node manager. All the required data structures 

declared as global variables are initialized using dynamic memory allocation. These 

include three data structures of type Circular Buffer to store the grid information for each 

of the LADAR’s. The basic implementation of the circular buffer was discussed in Chapter 

3. Since the obstacle detection algorithm and the terrain evaluation algorithm store 

variables of different data types, the circular buffer implementation for the two; is different 

in regards to the number and type of variables but the basic functioning remains the same. 

The position and orientation information is obtained from the JAUS component, GPOS 

and the vehicle state information is obtained from the JAUS component, VSS. This 

information is obtained using JAUS service connections. The JAUS service connections 

provide a mechanism to continuously obtain information at a fixed update rate from 

another component without the necessity to query the component each time for the 

information. Before entering into the Initialize state, the LTSS component creates the 

service connections to the GPOS and the VSS in the Startup state. Finally all the config 

variables in the config file are loaded in the program. 

Initialize State: This state makes sure that the GPOS and VSS service connections are 

active. In case these connections are not active the component remains in the initialize 

state. Even when in Ready state, if the GPOS or VSS service connections are down the 

component defaults to initialize state. 
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Ready state: This is the most important part of the component and all the processing is 

done in this state. Once the component is set to run with all the global variables initialized 

and the service connections active, it remains in the ready state. It loops through the ready 

state once every time it produces an output Traversability Grid. The following sequence of 

steps is performed each time: 

1. Conversion of the vehicle position from the LLA (Latitude/Longitude/Altitude) data 
format to the vehicle position in a fixed Global coordinate system using the UTM 
(Universal Transverse Mercator) conversion. This information is then transformed 
into the number of rows and columns moved by the vehicle since the previous update. 

2. Update each of the Circular buffers to account for the number of rows and columns 
moved by the vehicle. The circular buffer update method to account for the 
movement of the vehicle was discussed in Chapter 3. 

3. The next step is to acquire the range data from each of the lasers. The data from each 
laser is acquired in a different thread. The coordination between the laser data 
acquisition thread and the main component thread is maintained using a mutex lock. 
Since the OD laser runs at a frequency of 36 Hz and the two TE laser’s run at a 
frequency of 18 Hz., the OD laser loads a new set of range readings for every 
iteration of the Ready state, while each of the Terrain evaluation lasers alternatively 
load a new set of readings for every iteration. 

4. After the acquisition of the range data, the aforementioned algorithms pertaining to 
the mapping of data and assignment of the traversability values are implemented. The 
algorithms are executed in the following sequence; the Traversability Grid for the OD 
is updated with the new data, the two Traversability Grids for terrain evaluation 1 and 
terrain evaluation 2 are populated with the most recent data from the two terrain 
lasers respectively. Next, the OD algorithm evaluates and assigns each cell a 
traversability value, similarly the two terrain evaluation Traversability Grids are 
evaluated and traversability values of these two terrain evaluation grids are then 
combined into a traversability value. The final step is the fusion of the OD and the TE 
grid. 

5. The output Traversability Grid is passed on to the Smart Arbiter. The algorithm 
repeats the steps in the Ready state as long as the service connections for the GPOS 
and VSS are active.  
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Figure 5-1. Measurement range (Top view scan from right to left). A) Angular Range 0° -180° 
B) Angular Range 0°-100°. 
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Figure 5-2. Laser sensor RS422 interface  
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Figure 5-3. Sensor mounts on the NaviGator. 
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Figure 5-4. Sensor mount design. 
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Figure 5-5. Block diagram of the LTSS component 
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Figure 5-6. Obstacle detection LADAR. 
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Figure 5-7. Traversability value mapping. 
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Figure 5-8. Schematic of terrain evaluation sensors. 
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Figure 5-9. Weighted neighborhood analysis 
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Figure 5-10. Schematic working of negative obstacle detection algorithm. 
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Figure 5-11. Block diagram of terrain evaluation algorithms 

 
 

 
Figure 5-12. JAUS system topology. 



 

89 

 

Figure 5-13. JAUS compliant system architecture. 
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CHAPTER 6 
EXPERIMENTAL RESULTS 

The developed LADAR Traversability Smart Sensor (LTSS) component was tested on the 

autonomous platform, NaviGator. In Chapter 3 the NaviGator and the positioning system 

available on the platform were discussed. The LTSS component is formed from the fusion of two 

different implementations of the LADAR sensors, the obstacle detection (OD) algorithm and the 

terrain evaluation (TE) algorithm. Outputs from these two algorithms were fused resulting in the 

LTSS Traversability Grid. This chapter presents and analyzes the results obtained from the OD 

sensor, the TE sensor and finally the fusion of these two sensors. The tests in this chapter are 

conducted at the solar park facility of the University of Florida. 

Traversability Grid Visualization 

Throughout this chapter the Traversability Grid visualization tool is used to demonstrate 

the results of the sensor algorithms. The Traversability Grid is represented using the color code 

shown in Figure 6-1. As shown in the figure a value of 2, which is highly non-traversable is 

represented by the color red. The color green represents a traversability value of 12, which mean 

highly favorable to traverse and the color grey is for 7, which is a neutral value. The color shades 

for the intermediate values are shown in Figure 6-1. The color pink represents a value of 14 

which is assigned to cells whose traversability value is unknown. As discussed in the previous 

chapters the vehicle position is always in the center of the grid. In the Traversability Grid results 

that follow, the position and direction of the vehicle is always represented by an arrow. Similarly 

the images showing the test set-up also represent the vehicle position and direction as shown by 

an arrow.  
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Obstacle Detection Sensor Results 

Obstacle Mapping Results 

The obstacle detection (OD) sensor detects positive obstacles of height above a threshold 

value. If the obstacle is smaller then the threshold height, which is 0.6 m in the present 

implementation, the sensor cannot detect the obstacle. Similarly, the algorithm cannot offer any 

opinion regarding negative obstacles or good traversable path. Hence the algorithm can report 

traversability values in the range of 2 to 7 based on the confidence it has on the obstacle. A value 

of 7 represents free space, which means there is no positive obstacle reported by the OD sensor; 

however the cell could contain a negative obstacle or could be a rough, uneven terrain which 

cannot be determined by this sensor. 

The performance of the OD sensor is evaluated on the basis of two important factors: the 

accuracy in mapping the obstacle and the response time in detecting the obstacle. These 

performance assessments are evaluated at 3 different speeds of the vehicle: 10 mph, 16 mph and 

22 mph. Figure 6-2 shows the experimental set-up for one set of readings. The results of the 

output from the OD sensor are shown in Figure 6-3 and the summary of the mapping results is 

presented in Table 6-1. The table shows the comparison between the actual physical distance 

measured between the barrels and the output from the sensor at vehicle speeds of 10 mph, 16 

mph and 22 mph. As seen in Table 6-1 the obstacles are mapped accurately within an error of 0.5 

m which is equal to the grid resolution. Hence the maximum error is within 1 cell of the grid. 

Another set of readings was taken by changing the position of the barrels and repeating 

the experiments at the three speeds. Figure 6-4 shows the experimental set-up for the second set 

of readings. The results are presented in Figure 6-5 and Table 6-2. Similar to the first set of 

readings the error is within 1 grid cell i.e., 0.5 m. 
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From the above two set of readings it can be seen that the error in the system is within 1 

grid cell and the accuracy is independent of the lateral distance of the obstacle from the vehicle 

path. It was also seen that the error was repeated between the same barrels in all the three speeds. 

Since the actual physical distance was measured by a measuring tape, this also causes some error 

in the measurement of the distance. 

Obstacle Detection Response Time 

The response time of the sensor algorithm is computed by measuring the distance 

between the obstacle and the vehicle, at the time when the obstacle is detected. This distance is 

measured for each of the barrels in the two set of readings shown in Figure 6-2 and Figure 6-4 

respectively. A comprehensive summary of the results is presented in Table 6-3. The table shows 

the distance range in which the obstacles were detected in the direction of the vehicle path. The 

results of the reading 1 (represented by Figure 6-2) are presented in the movie links in the 

Objects 6-1, 6-2 and 6-3 for the vehicle speeds of 10, 16 and 22 mph respectively. 

Object 6-1. OD reading 1 at 10 mph [ODBarrelTest1_10mph.avi, 100892 KB]. 

Object 6-2. OD reading 1 at 16 mph [ODBarrelTest1_16mph.avi, 83265 KB]. 

Object 6-3. OD reading 1 at 22 mph [ODBarrelTest1_22mph.avi, 76214 KB]. 

Although the OD sensor detects obstacles above a threshold value, it was observed that 

the height of the obstacle played an important role in how fast the obstacle is detected. The 

experiment of detecting the obstacle is repeated by increasing the height of the obstacle. Figure 

6-6 shows the experimental set-up for the increased height by placing the barrels one on top of 

the other. The result is presented in the movies in Objects 6-4, 6-5 and 6-6 for the vehicle speeds 

of 10, 16 and 22 mph. 

Object 6-4. OD with increased barrel height at 10 mph [ODBarrelTest2_10mph.avi, 92079 KB].  

Object 6-5. OD with increased barrel height at 16 mph [ODBarrelTest2_16mph.avi, 83265 KB]. 
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Object 6-6. OD with increased barrel height at 22 mph [ODBarrelTest2_22mph.avi, 75392 KB]. 

The analysis of the result for obstacles with increased height is presented in Table 6-4. It can be 

seen from the results presented in Table 6-3 and Table 6-4, that the distance from which the 

obstacle is detected from the vehicle is very sensitive to the height of the obstacle, especially 

when the height of the obstacle is below 2 m. This is because even a small change in the vehicle 

pitch and roll angles cause a change in the angle of the laser beam. Due to this change the laser 

beam is no longer horizontal to the ground. For example a change in the pitch angle of 2° would 

cause a laser beam to shoot at a height difference of 1 m above the critical height at a distance of 

30 m from the laser. At high speeds on rough path (such as the environment shown in the above 

experiments) the roll and pitch changes and the rate of these changes are very high, and hence 

there is a difference in the performance based on the height of the obstacle. 

The above experiments demonstrated the performance of the OD algorithm. The next 

section presents the results for the TE algorithm and the fusion of the two algorithms. 

Fusion of the Obstacle Detection and Terrain Evaluation algorithms 

The main task of the terrain evaluation (TE) algorithm is to detect a smooth path and 

distinguish it from the surroundings. Unlike the obstacle detection (OD) algorithm which can 

report traversability values only in the range of 2 to 7, the TE algorithm can report values from 2 

to 12. As discussed in Chapter 5, the traversability value is computed for each cell based on a set 

of features. To assess the performance of the TE algorithm and subsequently the result of 

combining the outputs from the TE and OD sensors, the vehicle is driven on a small paved road 

within the solar park facility. The actual path is shown in the movie in Object 6-7. 

Object 6-7. Test Path [VideoForwardPath.avi, 335689 KB]. 

The vehicle speed was maintained at approximately10 mph. The same path was driven three 

times and each time the LTSS component was executed on this path in a different output mode. 
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The output from the OD, TE and the fused LTSS grid is shown in the movies linked to Objects 

6-8, 6-9 and 6-10 respectively. 

Object 6-8. OD result for test path [ODFusionTest1_10mph.avi, 356136 KB]. 

Object 6-9. TE result for test path [TEFusionTest1_10mph.avi, 393154 KB]. 

Object 6-10. LTSS result for test path [LTSSTest1_10mph.avi, 337804 KB]. 

For a second set of experiment the same path was driven in the opposite direction. The 

actual path is shown in the movie linked to Object 11. 

Object 6-11. Return test path [VideoReturnPath.avi, 239561 KB]. 

The output result from the OD algorithm, TE algorithm and the fused LTSS grid are shown in 

the movies linked to Objects 6-12, 6-13 and 6-14 respectively. 

Object 6-12. OD result for return path at 10mph [ODFusionTest2_10mph.avi, 306897 KB]. 

Object 6-13. TE result for return path at 10mph [TEFusionTest2_10mph.avi, 316651 KB]. 

Object 6-14. LTSS result for return path at 10mph [LTSSTest2_10mph.avi, 239208 KB]. 

A couple of scenarios from the above two experiments are selected and discussed here. 

Scene 1 

The scene 1 is selected from the first of the above two experimental readings. Figure 6-7 

shows the image of the environment with barrels, poles, trailers and some name boards. Figure 6-

8 shows the outputs from the OD and TE algorithms. As seen in the results the obstacles which 

can be clearly distinguished from the surroundings mainly due to their height (these include the 

barrels, name boards, poles and trailers) are mapped very well by the OD sensor. However, the 

rest of the region is shown as free space without any indication of a favorable traversable path. 

The TE algorithm makes a good attempt to distinguish the smooth path from the surrounding 

grass region and also shows the discontinuity at the edge of the path. The classification results 

from the TE algorithm are based on the absolute scale of traversability defined for each of the 
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features; the slope, variance and the nearest neighbor. As it can be seen although the path is 

distinguishable, the traversability values for most of the region ranges between 6 and 12. This is 

because, even though there is a clearly distinguishable paved path, the region around the path is 

still considered to be drivable by the vehicle. The result after combining the two algorithms is 

depicted in Figure 6-9. As seen in the figure, the LTSS component takes the advantages of both 

the algorithms to represent clearly distinguishable obstacles and to follow a smooth path. 

Scene 2 

The scene 2 is also selected from the first experiment. Figure 6-10, shows a snapshot of the 

video representing the scene. The results from the individual sensor algorithms are shown in 

Figure 6-11 and the fused output is shown in Figure 6-12. Similar to scene 1, it can be seen that 

the fused output has the advantages from both the sensor algorithms and makes a more complete 

representation of the environment then the output obtained from either one of the algorithm.   

Scene 3 

The scene 3 is selected from the second set of experiments (i.e., when the vehicle is on its 

way back). Figure 6-13 shows the environment. The results are presented in Figures 6-14 and 6-

15. It can be seen from Figure 6-14 that the OD algorithm identifies and maps obstacles such as 

the dumpster and the TE algorithm distinguishes the paved path from the surrounding region. 

The fused output shows a very good representation of the environment. 

High Speed Test of the LTSS component 

A part of the first experimental path was driven at a higher speed and the results were 

assessed. The vehicle reached the speed of approximately 22 mph. The vehicle was driven three 

times to obtain the outputs from the OD sensor , TE sensor, and the fused LTSS Traversability 

Grid. Objects 6-15, 6-16 and 6-17 shows the output from OD, TE and the fused LTSS algorithm 

respectively. 
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Object 6-15. Obstacle detection result at 22mph [ODFusionTest_22mph.avi, 109706 KB]. 

Object 6-16. Terrain evaluation result at 22mph [TEFusionTest_22mph.avi, 110646 KB]. 

Object 6-17. LTSS result at 22mph [LTSSTest_22mph.avi, 135207 KB]. 

The main limitation to achieve better results at higher speeds is the laser update rate. The 

terrain sensors operate at 18 Hz and at this rate each individual grid cell barely manages to get at 

the most a single laser scan data above speeds of 20 mph. The speed limitation factor based on 

the laser update rate is discussed in Chapter 7. Another important factor is the vehicle position 

and orientation. At higher speeds it is critical to correlate the laser data and the vehicle position 

fairly accurate to obtain a reasonable point cloud of the laser data. In spite of the above 

limitations, the developed LTSS component produces fairly good results up to speeds of 20 mph.  
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Figure 6-1. Traversability Grid color code. 
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Figure 6-2. Obstacle detection reading 1 experimental set-up. 
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Figure 6-3. Obstacle detection reading 1 output at varied speeds.  A) 10 mph B) 16 mph C) 22 
mph 
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Figure 6-4. Obstacle detection reading 2 experimental set-up. 
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Figure 6-5. Obstacle detection reading 2 output at varied speeds.  A) 10 mph. B) 16 mph. C) 22 
mph. 
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Figure 6-6. Obstacle detection response time with increased height. 
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Figure 6-7. Test environment showing scene 1. 
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Figure 6-8. Output results for scene 1. A) OD algorithm B) TE algorithm 
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Figure 6-9. Scene 1 LTSS component output environment representation. 

 

 

 



 

104 

Dumpster

Trailer

Tree 1

Tree 2

Dumpster

Trailer

Tree 1

Tree 2

 

Figure 6-10. Test environment showing scene 2. 
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Figure 6-11. Output results for scene 2. A) OD algorithm B) TE algorithm 
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Figure 6-12. Scene 2 LTSS component output environment representation. 
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Figure 6-13. Test environment showing scene 3. 
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Figure 6-14. Output results for scene 3. A) OD algorithm B) TE algorithm 



 

109 

Obstacle 1

Obstacle 2

Dumpster

Obstacle 1

Obstacle 2

Obstacle 1

Obstacle 2

Dumpster

 

Figure 6-15. Scene 3 LTSS component output environment representation.  
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Table 6-1. Traversability Grid mapping of obstacle detection algorithm for reading 1.  
Distance 
measured 
between 

Actual distance 
(m) 

Output 
measurement 
(m) at 10mph 

Output 
measurement 
(m) at 16mph 

Output measurement 
(m) at 22mph 

Barrel 1 and 2 6 6 6 6 
Barrel 2 and 3 24 24 24 24 
Barrel 3 and 4 6 6.5 6.5 6.5 
 
Table 6-2. Traversability Grid mapping of obstacle detection algorithm for reading 2.   

 Actual 
Distance 

(m) 

Output 
measurement 
(m) at 10mph 

Output 
measurement 
(m) at 16mph 

Output measurement 
(m) at 22mph 

Barrel 1 and 2 12 12 12 12 
Barrel 2 and 3 18 18.5 18.5 18.5 
Barrel 3 and 4 12 12 12 12 

 
Table 6-3. Response time reading 1 

Speed of the 
vehicle (mph) 

Distance at which obstacle first 
detected (i.e. traversability 

value < 7) (m) 

Distance at which traversability value = 2 
(m)  

10 29-30 24-25 
16 28-30 20-22 
22 21-22 14-16 

 
Table 6-4. Response time reading 2 with increased obstacle height 

Speed of the 
vehicle (mph) 

Distance at which obstacle first 
detected (i.e. Traversability value 

< 7) (m) 

Distance at which Traversability value = 
2 

(m) 
10 30 29-30 
16 29-30 26-27 
22 26-28 20-21 
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CHAPTER 7 
GENERALIZED SENSOR COMPONENT 

The previous chapters concentrated on the implementation of the LTSS component on a 

specific vehicle. Most of the laser based real-time terrain evaluation and obstacle detection 

implementations discussed in the literature are also vehicle specific and/or terrain specific (i.e., 

an obstacle detection sensor or a terrain evaluation sensor is developed for a specific vehicle and 

environmental conditions). To enable a wider use of the developed sensor component, this 

chapter presents a general guideline to select specific sensor related parameters for implementing 

the proposed sensor component algorithms on different vehicles or vice a versa given the sensor 

configuration parameters, what would be the limiting conditions of operation for the proposed 

algorithms to work. 

Figure 7-1 shows the schematic of the overall implementation of sensor component. If the 

current implementation is examined in a broader view, it can be seen that the obstacle detection 

algorithm and the negative obstacle detection algorithm discussed in Chapter 5, are the limiting 

implementations of the terrain evaluation algorithms (slope, variance and neighborhood 

analysis). While the terrain evaluation algorithms evaluates the terrain characteristic in front of 

the vehicle from a point cloud of the terrain, the obstacle detection makes sure that there is 

nothing in front of the vehicle over which it cannot drive and the negative obstacle detection 

makes sure that there is some surface on which to drive. There are a number of sensor related 

parameters that would depend on the vehicle on which these sensors are implemented. Some of 

these sensor related parameters are: 

1. Placement of each of the sensor hardware on the vehicle. 

2. Sensor tilt angles towards the ground. 

3. Sensor field of view. 
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4. Sensor resolution. 

5. Update rate of the sensor. 

These sensor parameters are functions of the vehicle specifications and the performance 

requirements of the vehicle. A list of these specifications would include: 

1. Vehicle overall dimensions. 

2. Turning radius of the vehicle. 

3. Speed range of the vehicle. 

The sensor parameters would also be affected by the terrain conditions which could be analyzed 

in the following terms: 

1. Roughness of the road. 

2. Maximum expected curvature in the terrain. 

3. Presence and magnitude of negative obstacles. 

4. Minimum height of moving obstacles expected in the terrain. 

The problem statement could thus be stated as, given the vehicle specifications and the 

performance requirements of the vehicle devise a generalized method to define the actual 

hardware requirements of the laser sensors and the positioning of the sensors on the vehicle to 

implement the proposed algorithms. 

General Parameters for Obstacle Detection sensor 

For the obstacle detection (OD) sensor, the height at which the sensor is mounted is very 

important. Since this height acts as a threshold value, obstacles below this height will not be 

detected by the OD sensor; at the same time selecting to place the laser at a lower height would 

increase the chances of false hits due to ground noise. Ground noise is more prominent in paths 

with significant up and down hills. Hence the mounting height of the laser depends on the terrain 

condition, if the terrain is relatively flat, choosing to mount the sensor at a lower height will help 
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detect obstacles with lower heights, however for path with uphill and downhill slopes, the sensor 

will have to be mounted at a relatively higher height to avoid ground noise. The OD sensor is 

particularly important for clearing moving obstacles. If the moving obstacle is less then the 

height of the OD sensor, it will not be possible to detect the obstacle and clear it once it has 

moved. Although the obstacle could be detected by the terrain evaluation sensors, the problem 

would be to clear this obstacle once it has moved since terrain evaluation algorithms do not clear 

the obstacle once it is detected at a particular location. 

General Parameters for Terrain Evaluation sensor 

One of the important vehicle dimensions is the height at which the terrain mapping laser 

can be mounted on the vehicle. Let h be the height at which the laser can be mounted on the 

vehicle. The other laser mounting parameter is the tilt angle at which the laser is mounted. The 

angle of tilt is governed by the terrain condition. The tilt angle cannot be greater then the 

expected slope changes in the terrain. If angle θ is the tilt angle of the laser with respect to the 

vehicle ground plane, than this angle should be greater then the change in slope, found on the 

path, otherwise the laser beam readings will not hit the terrain surface. The above two parameters 

govern the look ahead distance, dl of the sensor as follows: 

tanl
hd

θ
=  (7.1) 

The current implementation used two lasers for terrain evaluation; one with a smaller tilt angle to 

get a greater look ahead distance, the other one was used with a bigger tilt angle to be able to 

scan the ground ahead with higher slope changes, but at a distance much closer to the vehicle. 

The TerrainLADAR1 discussed in Chapter 5 is mounted at an angle of 6° and the 

TerrainLADAR2 is mounted at an angle of 12°. Figure 7-1 Both the lasers are placed at a height 

of 1.9m. The look ahead distance for the TerrainLADAR1 is computed as: 
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1.9 18.07
tan 6ld m= =  

Similarly the look ahead distance for the TerrainLADAR2 is: 

1.9 8.94
tan12ld m= =  

Figure 7-1 shows the three parameters for the TerainLADAR1. The look ahead distance is an 

important digit in deciding the speed of the vehicle. This distance is the time the vehicle has to 

avoid obstacles and travel a smooth path. But at the same time, the speed of the vehicle is also 

limited by the update rate of the laser and the expected grid resolution. To evaluate the grid, each 

cell in the grid should have sufficient amount of data points. To make sure that at least data from 

one single laser scan are assigned to a cell the following relation has to hold: 

Re
vLaserUpdateRate

Grid solution
>=  (7.2) 

where, v is the speed of the vehicle.  

For example in the case of the NaviGator, the update rate of the terrain laser sensors is 18 Hz. 

and the implemented grid resolution is 0.5 m. Hence to obtain laser data in each cell in the grid 

within the field of view of the laser the speed of the vehicle has to be limited to: 

* Re
18*0.5
9 /

v LaserUpdateRate Grid solution
v
v m s

=
=
=

 

When the vehicle is driving on a straight road, the sensor field of view is in the direction of 

the vehicle travel; however when the vehicle is making a turn this is not the case. While making 

a turn the sensor field of view is in a direction tangential to the circle defined by the curved path 

followed by the vehicle. For safe driving, one of the sensor design requirements is to specify a 

parameter which defines the minimum width of the terrain from either side of the centerline of 
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the vehicle drive path that should be in the sensor field of view at any time. This design 

parameter, ‘wm’, is shown in Figure 7-2. To satisfy this design condition, the vehicle drive path is 

limited to a minimum allowable radius of curvature, ‘R’. The expression for R can be expressed 

in terms of the parameters defining the sensor field of view. As shown in the figure the sensor 

field of view is defined by the angle, α, and the look ahead distance, dl. Consider the triangle 

OAB in the Figure 7-2, the angle b can be expressed as: 

90
2

b α
= − . (7.3) 

Using the cosine rule for the triangle OAB, the following expression is obtained: 

2
2 2 2sec 2 sec cos 90

2 2 2 2
m

l l
wR R d Rdα α α⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
. (7.4) 

Solving the Equation 7.4, R is obtained as: 

2
2 2*sec

2 4

2 sec cos 90
2 2

m
l

l m

wd
R

d w

α

α α

⎛ ⎞ −⎜ ⎟
⎝ ⎠=

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (7.5) 

Equation 7.5 expresses R in terms of the sensor parameters and the minimum width, which is a 

design requirement. In case of the terrain sensor implementation of the NaviGator, consider the 

TerrainLADAR1 sensor which scans the terrain at a distance of 18 m in front of the vehicle. Let 

the minimum required width, wm be 28 m, (i.e. the sensor should scan a distance of at least 14 m 

on each side of the path center line). Using the above formula,  

2
2 2 100 2818 *sec

2 4
100 1002*18*sec cos 90 28

2 2
39.47 .

R

R m

⎛ ⎞ −⎜ ⎟
⎝ ⎠=

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=
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Thus the above condition of scanning the minimum width across the path center line can be 

achieved only for a radius of curvature above or equal to the computed value.  
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Figure 7-1. Sensor configuration. 
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CHAPTER 8 
CONCLUSION AND FUTURE WORK 

The research presented an approach to represent the environment around an autonomous 

vehicle. Two different implementations of laser sensors to evaluate the surroundings were 

presented. The advantages and disadvantages of each were discussed and a sensor fusion 

technique to combine the outputs of these two algorithms was presented. 

The dissertation presented a novel technique, the weighted neighborhood analysis and the 

results from this algorithm were fused with the slope and variance algorithms to give an estimate 

of the terrain surrounding the autonomous vehicle. The results obtained from the terrain 

evaluation algorithms were very promising. 

Instead of using a binary classification of traversable or obstacle, a traversability scale was 

used to define the environment. The traversability scale allowed representing a wide range of the 

terrain. It was possible to distinguish between varying degrees of obstacleness. The traversability 

scale helped the planner to propose an optimal path of travel at every instant of time. The next 

step is to use a finer traversability scale. A traversability scale of 0:63 instead of the 0:15 will 

give a better resolution of the environment and hence should be considered for implementation. 

The terrain mapping algorithm discussed in the literature does not implement a time 

history of data points. The only way the latest data are accounted for in the present scheme is by 

replacing the old data points with the new data points once the cell has reached a maximum 

allowed number of data points. The problem with this scheme is that if there is a moving obstacle 

or if the sensor registers an erroneous hit within a cell, there is no way to clear it unless the same 

region is scanned again by the sensor. A better way to approach this problem would be to time 

stamp the data points. The time stamped data points can be assigned weights. If the vehicle gets 

stuck due to an erroneous data point, the confidence on the data point can be lowered with time. 
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The vehicle orientation was accounted for mapping the data points. The vehicle orientation 

also provides a very valuable input of the terrain characteristics. The rate of change of the 

orientation angles provides a good estimate of the roughness of the path the vehicle is traveling 

on. It was also observed that the magnitude of error in the mapping is related to the rate of 

change of orientation angles. On a rougher terrain these rates are higher and so are the errors in 

mapping the data. The final results of the sensor component could be improved by incorporating 

this information in the rule based scheme. 

The grid resolution used for the current implementation was 0.5m. Considering the size of 

the vehicle and the outdoor environment, the resolution gave good results. However, it would be 

worth trying to use a higher resolution grid such as a 0.25m and compare the results. It is 

generally desirable to have a higher resolution grid in the area close to the vehicle and as the 

distance from the vehicle increases a grid with a lower resolution could serve the purpose. This 

can be achieved by maintaining the data in two grids with different resolutions; a higher 

resolution grid with smaller overall dimensions close to the vehicle and another lower resolution 

grid covering a larger area around the vehicle. A different way to serve the purpose of higher 

resolution near the center of the grid (vehicle position) but at the same time cover a larger area 

would be the implementation of a polar grid. A polar grid inherently gives a higher resolution in 

the region close to the vehicle, and as the distance increases the resolution of the grid decreases. 

The certainty factors technique for uncertainty management has wide applications in the 

medical field. However, the use of certainty factors in sensor fusion is a novel approach. One of 

the biggest advantages of the scheme is its ability to combine controversial evidences. In future, 

the possibility of combining outputs from other sensors such as the monocular vision using rule-

based implementation of certainty factors should be studied. 
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The lasers used for mapping the terrain were 2-dimensional range scanners (i.e. they 

produced a single line scan image) and the map was built by coupling these line scans with the 

vehicle motion. Although commercial laser scanners are available with a horizontal and vertical 

field of view, they are highly expensive. A good alternative to generate a multi-line scanner is to 

provide a tilt mechanism to the single line scanners. The tilt motion produces multiple lines of 

scans at different angles. The mechanism can either be used to point the laser at the required 

angle or line scans can be generated at a uniform distance. To take advantage of the tilt motion, 

the laser scan update rate should be high enough to be able to scan multiple lines at the required 

speed. 
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APPENDIX 
TRAVERSABILITY VALUE MAPPING FOR TERRAIN EVALUATION ALGORITHMS 

The table below shows the mapping of the criterion used to evaluate the terrain in to the 
traversability values. These tables were implemented as configuration parameters in a config file. 
 
Table A-1.  Mapping of slope values to traversability value. 

Slope (degrees) Traversability Value 

<= 10 12 

> 10 & <= 20 11 

> 20 & <= 30 10 

> 30 & <= 32 9 

> 32 & <= 35 8 

> 35 & <=  40 7 

>40 & <= 50 6 

>50 & <= 60 5 

>60 & <=80 4 

>80 & <= 85 3 

>85 & <= 90 2 
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Table A-2. Mapping of the variance values in to traversability values. 

Variance (m) Traversability value 

<= 0.0002 12 

> 0.0002 & <= 0.0003 11 

> 0.0003 & <= 0.0004 10 

> 0.0004 & <= 0.0005 9 

> 0.0005 & <= 0.001 8 

> 0.001 & <= 0.003 7 

> 0.003 & <= 0.05 6 

> 0.05 & <= 0.1 5 

> 0.1 & <= 0.2 4 

> 0.2 & <= 0.4 3 

> 0.4 & <= 1.0 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

123 

Table A-3.  Mapping of neighborhood values to traversability value. 

Neighborhood value (m) Traversability value 

<= 0.08 12 

> 0.08 & <= 0.16 11 

> 0.16 & <= 0.2 10 

> 0.2 & <= 0.25 9 

> 0.25 & <= 0.3 8 

> 0.3 & <= 0.35 7 

> 0.35 & <= 0.4 6 

> 0.4 & <= 0.5 5 

> 0.5 & <= 0.6 4 

> 0.6 & <= 0.8 3 

>0.8 & <= 2.0 2 
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